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Synopsis

This book provides a solid foundation for the analysis of radiation and
diffraction of water waves by large bodies such as offshore structures and
ships. The book consists of two main parts. Four chapters consider far-field
waves and wave patterns for a general dispersion relation associated with
plane waves, with specific applications to an offshore structure in waves
and a ship that steadily advances in calm water or through waves. Seven
chapters expound a new method—that greatly differs from the usual Green-
function and boundary-integral-equation method—for evaluating near-field
flows. Specifically, the two fundamental questions: what boundary-integral
equation should be solved? and how can this equation be solved? are
reconsidered. Two main results of this reconsideration are a new integral
equation that is incomparably simpler than the classical integro-differential
equation, and a method of solution called Fourier-Kochin (FK) method
that is simpler and more general than the usual Green-function method
(GFM); Indeed, the FK method avoids major complexities of the usual
GFM method, and is directly applicable to plane waves in other dispersive
media such as floating elastic structures or ice sheets. A fundamental result
of the FK method is an optimal decomposition of the disturbance due to a
general forcing function into waves and a non-oscillatory local disturbance.
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Preface

This book considers wave diffraction and radiation by ships and offshore
structures. Realistic and practical methods that account for the dominant
flow physics and are suited for applications to design and optimization are
crucial. Indeed, analytical methods and related computational tools that
are both realistic and practical—two critical requirements—are essential.
Accordingly, the analysis expounded in the book is based on potential-flow
theory, which is realistic for diffraction-radiation of water waves by large
bodies such as ships and offshore structures, and the related method of
Green functions and boundary-integral flow representations.

Three major classes of flows are primarily considered: diffraction and
radiation of regular (time-harmonic) waves by an offshore structure (or some
other stationary body such as a moored ship) in water of uniform finite
depth, and flow around a ship that steadily advances in calm water or
through regular waves. The general boundary-value problems associated
with these three basic classes of flows are defined in chapter 1.

Far-field free waves and near-field local flow

The flow around a ship or an offshore structure is usefully decomposed
into waves and a non-oscillatory local flow, which is important at the body
(ship or offshore structure) and in its vicinity but decays rapidly away from
the body. Although created by the body, the waves propagate with little
influence from the body, and accordingly are commonly called free waves.

Both the local flow, important in the near field (at and near the body),
and the free waves dominant in the far field (away from the body) are main
features of flows around ships and offshore structures. Computation of the
local-flow component is required to evaluate the pressure distribution at the
body surface and the related hydrodynamic coefficients (added mass, wave
damping), linear and nonlinear wave loads, and body motions. The free
waves and the related far-field wave patterns created by ships and offshore
structures are also important. Indeed, these far-field wave patterns are the
most conspicuous feature of flows around ships and offshore structures.
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Free waves are considered in Part 1, which consists of four chapters, and
near-field flows—for which both the waves and the local-flow component
are important—are considered in Part 2, which contains seven chapters and
consists of two main parts: Part 2a (chapters 6-9) and Part 2b (chapters
10-12).

PART 1: FREE WAVES AND WAVE PATTERNS (chapters 2-5)

A radiation condition that relies on observations, e.g. a ship that steadily
advances in calm water creates waves behind the ship but not ahead, is
commonly invoked in the analysis of wave diffraction-radiation in ship and
offshore hydrodynamics. Radiation conditions are not obvious for a ship
that advances through regular waves in the regime where waves are created
both behind the ship and ahead. However, radiation conditions are not
necessary and indeed are not invoked in the book, which considers flows
that slowly grow from rest at time 7' = —oo as is expressed in .

Thus, chapter 2 considers basic and modified elementary wave functions.
The basic wave functions satisfy Laplace’s equation and the boundary con-
ditions at the sea bottom and at the free surface. These basic elementary
waves are subsequently modified in accordance with flows that slowly grow
from a state of rest at the time 7' = —oo and vanish in the far field. Free
waves created by ships or offshore structures are then expressed in chapter 2
as a linear superposition of these generalized elementary waves. Chapter 3
presents general basic relations and far-field approximations that explicitly
determine the group and phase velocities, as well as far-field wave patterns,
in terms of the dispersion function. These relations hold for plane waves in
a general dispersive medium.

Chapters 2 and 3 also include applications of the basic relations given
in these two chapters for a general dispersive medium to the simple case
of offshore structures in regular waves. The relations given in chapters 2
and 3 for general dispersive waves are further applied in chapters 4 and 5
to the free waves created by a ship that steadily advances in calm water
or through regular waves. The application to a ship that advances through
regular waves given in chapter 5 provides a vivid illustration of the notable
fact that a simple dispersion relation can define multiple dispersion curves
and a surprisingly rich set of wave patterns that involve widely different
waves.

PART 2: NEAR-FIELD LOCAL FLOWS (chapters 6-12)

Near-field local flows are considered in 7 chapters, which are divided into
Part 2a (chapters 6-9) and Part 2b (chapters 10-12). Part 2a considers the
formulation of boundary-integral flow representations based on the Green
functions that satisfy the free-surface boundary condition relevant to the
classes of flow considered in the book. Part 2b expounds the fundamental
elements of a general method of solution called Fourier-Kochin method.
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PART 2a (chapters 6-9) : Green-functions and boundary-integral
flow representations

The method, commonly called Green-function and boundary-integral-
representation method, for solving boundary-value problems associated with
Laplace’s equation (or similar equations) and general 3D geometries is ex-
pounded in chapter 6. This general method is then applied in chapters
7-9 to the classes of flows around ships and offshore structures considered
in the book. Specifically, chapter 7 defines the Green functions associated
with these classes of flows, and chapters 8 and 9 apply the classical Green
identity given in chapter 6, with the Green functions defined in chapter 7,
to formulate boundary-integral flow representations.

The Green functions associated with diffraction-radiation of regular
waves by an offshore structure in deep water or in finite water-depth, and
the Green functions associated with a ship that advances at a constant speed
in calm deep water or through regular waves, are considered in chapter 7.

A Green function is commonly defined as the velocity potential of the
flow that is created at a flow-field point € by a point-source located at a
source-point x that is submerged below the free surface. However, this
common interpretation breaks down if the singularity-point x is located
at the free-surface plane z = 0. In that case, the Green function must be
associated with a flux through the plane z = 0, as is explained in section 6.7
and is explicitly stated in the fundamental relations (8.6¢td) and (9.4b}c).

A Green function can also be viewed as the velocity potential of the flow
created at a flow-field point x by a point-source at a point £&. This symmetry
however involves a subtlety—related to the boundary condition at the free
surface—for a ship that steadily advances in calm water or through waves, as
is explained in section 6.8 and is readily apparent in the boundary conditions

at the free surface in (9.3c) and (9.4b}c).

The Green functions considered in the book are associated with the
Laplace equation, and accordingly are expressed in terms of two elementary
solutions of the Laplace equation: the free-space singularity S, widely called
Rankine source, and the basic wave function E, which are defined as

S=1//(€—2)2+ (n—y)2+ ((—2)? and E = ekz+ilazthy)

where o and 8 are Fourier variables and k = /a? + 32. Specifically, the
Green functions, commonly denoted as G, are expressed in terms of a Fourier
component G that is given by a Fourier superposition of elementary wave
functions £ and a Rankine component G¥ defined in terms of Rankine
sources S. The elementary solutions S and F of the Laplace equation are
related via Fourier transformation, and the Rankine-Fourier decomposition
GT + GT' consequently is not unique. The benefits of this non-uniqueness

xiii



are exploited in chapter 7 to define optimal Rankine-Fourier decomposi-
tions of the Green functions associated with potential flows around offshore
structures in waves and ships advancing in calm water or through waves.

Chapter 7 also includes a Green function—useful for a ship advancing
through regular waves of frequency w at a constant speed V; in the regime
Viw/g < 1/4 where g is the acceleration of gravity—that agrees with the
Green functions associated with the special cases V; = 0 or w = 0. Specifi-
cally, expressions provide a formal decomposition of the Green func-
tion into a component that represents a flow scaled in terms of the length
g/w? and contains ring waves, and a component that is scaled with respect
to V2/g and contains inner and outer Kelvin-like V waves.

The method of Green function and boundary-integral representation ex-
pounded in chapter 6 is applied in chapters 8 and 9 to the general boundary-
value problems associated with wave diffraction and radiation by an offshore
structure in regular waves (chapter 8) and a ship that steadily advances
through waves (chapter 9). Specifically, Green’s basic identity is applied to
the classical Neumann-Kelvin linear boundary-value problem for potential
flow around the hull surface of a body (ship, offshore structure) that pierces
the free surface. Green’s fundamental identity is also applied to an alter-
native linear flow model—called rigid-waterplane flow model—in which a
free-surface-piercing ship or offshore structure is treated as a body that is
closed via a rigid waterplane submerged at an infinitesimally small depth
below the free surface.

Green’s identity applied to the usual Neumann-Kelvin linear flow model
or the rigid-waterplane flow model yields identical boundary-integral flow
representations for a stationary body. However, these alternative linear flow
models yield different flow representations for a ship that advances through
waves or in calm water. The rigid-waterplane flow model-—with the crucial
constraint that the thin layer of water between the rigid lid that closes the
submerged body and the waterplane above the lid is a ‘dead-water’ region—
yields a remarkably simple boundary-integral flow representation. This flow
representation holds for a stationary body in regular waves as well as a ship
that steadily advances in calm water or through regular waves. A common
feature of the alternative boundary-integral flow representations given in
chapters 8 and 9 is that they are weakly singular and define flow potentials
that are continuous at the hull surface of the ship or offshore structure.
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PART 2b (chapters 10-12) : Fourier-Kochin method
and flow representations

The boundary-integral flow representations given in chapters 8 and 9
express the flow potential associated with a body (offshore structure, ship)
as distributions of a Green function and its gradient over the surface of the
body. The Fourier components in the Rankine-Fourier representations of the
Green functions for the classes of flows considered in chapter 7 are defined
by singular double Fourier integrals. The classical Green-function method
involves two basic steps. The first step is the ‘Fourier-integration’ that is
required to evaluate the Green function, and its gradient, associated with a
particular class of flows. This task involves complicated mathematical anal-
ysis, reported in innumerable studies for the major classes of flows around
ships and offshore structures considered in the book. The second step in the
usual Green-function method is the ‘space-integration’ required to integrate
the Green function and its gradient over the panels that approximate the
body surface. This step, while less difficult than the ‘Fourier-integration’
step, requires special attention because the Green functions associated with
the classes of flows considered in the book involve intricate singularities.
The classical Green-function method has been steadfastly applied in ship
and offshore hydrodynamics (and other fields) over the past fifty years, but
is not considered in the book.

A simpler and more general alternative approach, called Fourier-Kochin
method, is expounded instead. The ‘space-integration’ over the panels that
approximate the hull-surface of a body (ship, offshore structure), which
is performed after the ‘Fourier-integration’ in the usual Green-function
method, is performed first (and the ‘Fourier-integration’ is performed next)
in the Fourier-Kochin method. Thus, the Fourier and space integrations
are performed in reverse order in the Fourier-Kochin method expounded in
chapter 10. An obvious benefit of this approach is that the space-integration
merely consists in integrating smooth elementary functions (exponential and
trigonometric functions) over the panels that approximate a body surface,
whereas the usual Green-function method requires integration of intricate
singularities imbedded in the Green functions associated with flows around
ships or offshore structures.

Another major advantage of the Fourier-Kochin method is that it avoids
the daunting mathematical analyses of Green functions that are required—
for every class of flows around ships and offshore structures or every other
type of dispersive waves—in the usual Green-function method. Indeed, an
important benefit of the Fourier-Kochin method is its generality, as is now
explained.

The ‘Fourier integration’ step, which evidently is the major task in the
Fourier-Kochin method, consists in evaluating a double Fourier integral that
is singular along every curve, called dispersion curve, defined (in the Fourier
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plane) by the dispersion relation relevant to the class of dispersive waves
under consideration. Chapter 11 considers this crucial fundamental task
in the Fourier-Kochin method for a gemeral dispersion function associated
with plane waves in a general dispersive medium, and a general amplitude
function related to a general forcing function such as a general distribution
of singularities. Specifically, chapter 11 presents an optimal decomposition
of the basic singular double Fourier integral associated with the Fourier-
Kochin method into a wave component and a non-oscillatory local distur-
bance. The waves in this fundamental flow decomposition—which does not
involve approximations, i.e. is exact—are defined by a single Fourier inte-
gral along every dispersion curve defined by the dispersion relation, and the
local disturbance is given by a double Fourier integral that has a smooth
and localized integrand.

The basic waves and local-effects decomposition given in chapter 11 for
a general dispersion relation and a general forcing function is applied in
chapter 12 to the specific dispersion relations associated with an offshore
structure in regular waves and a ship that advances in calm water or through
regular waves. The expressions given in chapter 12 yield exact analytical
representations, suited for accurate numerical evaluation, of the waves and
local flows created by a general distribution of singularities for the classes
of flows around ships and offshore structures considered in the book.

Foundation of a new type of panel methods

In summary, chapters 6-12 reconsider the two most important issues
associated with the evaluation of near-field potential flows around ships
and offshore structures via panel methods. These two basic issues are: (i)
What boundary-integral flow representation should be solved? and (ii) How
can this flow representation be solved? The reconsideration of these two
basic questions has led to (i) the remarkably simple boundary-integral flow
representation and (ii) an alternative, called Fourier-Kochin method,
to the usual Green-function method of solution. The boundary-integral flow
representation given in chapters 8-9, and the Fourier-Kochin method and
flow representations expounded in chapters 10-12 are main contributions of
the book that lay the foundation of an alternative to the approach applied
over the past fifty years in numerous numerical studies. Indeed, the primary
objective of the book is to consider crucial fundamental issues rather than
merely review known results and theories.

Relevance to a broad class of plane dispersive waves

As was already noted, the Fourier-Kochin approach and the associated
general decomposition into waves and local-effects given in chapters 10 and
11 hold for general dispersion relations, and are then directly applicable to
various plane dispersive waves; e.g. flows around bodies moving over very
large floating structures or ice sheets modeled as thin elastic plates, free-
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surface flows dominated by surface tension, and seismic waves.

The analytical expressions, notably the expressions for the wave patterns
and the group velocity, obtained in the analysis of free waves expounded in
chapters 2 and 3 likewise only involve the dispersion function, and hence are
applicable to various classes of plane dispersive waves in addition to ship
waves considered in chapters 4 and 5.

The classical Green-function and boundary-integral-representation
method expounded in chapter 6 and its applications in chapters 7-9 to the
boundary-value problems associated with flows around ships and offshore
structures are relevant to similar boundary-value problems in engineering
and physics. In particular, the Fourier components in the expressions for the
Green functions given in chapter 7 mostly involve the dispersion function
and are then applicable, with appropriate modifications, to various classes
of plane dispersive waves.

Focus on fundamental analytical flow relations

The primary goal of the book is to expound fundamental analytical flow
relations that underly the analysis of far-field flows (free waves) and near-
field flows due to ships and offshore structures. Numerical implementations
of these analytical flow representations can be accomplished in alternative
ways, and this vast issue is not considered in the book.

Some elementary material, including basic knowledge about the energy
transported by elementary plane progressive waves and the decomposition
of the flow around an offshore structure into a diffraction problem and six
radiation problems associated with basic small-amplitude translational and
rotational rigid-body motions of the structure, is not considered in the book.
Analytical relations for the wave energy radiated by a ship or an offshore
structure, and the related wave drag and wave damping, obtained from
an analysis of the far-field waves created by the body, although elegant
and interesting, are also ignored because the alternative near-field pressure-
integration method is most directly related to the method of Green function
and boundary-integral flow representation expounded in the book.

Target audience and requirements

The boundary-value problems and the corresponding Green functions,
boundary-integral flow relations, and analytical representations of flows due
to a general distribution of singularities for an offshore structure in waves
or a ship that steadily advances in calm water or through waves evidenly
involve extensive mathematical developments. However, the required math-
ematics actually are fairly simple, and all mathematical developments are
expounded in a self-contained way in the book, which therefore is suited
for scientists, engineers, graduate and undergraduate students with basic
knowledge of fluid mechanics and water waves, and a desire to acquire a
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solid basis for the analysis of far-field waves and near-field flows in ship and
offshore hydrodynamics and/or in similar dispersive media.

The book can be used as a textbook for several courses. Specifically,
chapters 1-3 can be used as an introductory course on water waves and other
classes of dispersive plane waves. Chapters 1-5 provide a more complete
exposition that includes specific applications to the far-field wave patterns
created by a ship that advances in calm water or through regular waves.

Chapters 1-3 plus chapter 6 provide an introduction to both far-field
free waves and the method of Green function and boundary-integral flow
relations. A more complete account of that important method is given
in chapters 7-9. The addition of chapters 10-12 provides a full in-depth
account of theoretical methods suited for the analysis and the analytical
representation of near-field flows. The analysis of far-field waves given in
chapters 2-3, the general method of Green function and boundary-integral
relation introduced in chapter 6 and the Fourier-Kochin method expounded
in chapters 10-11 are directly applicable to various classes of dispersive
plane waves, and can then be used as an introduction to the analysis of
such waves.

Notes

Notes, marked as [m,n] to identify note number n in chapter number m,
are included in the text and gathered in the last chapter, entitled ‘Notes’.
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Chapter 1

Basic equations and
boundary-value problems

This chapter defines the general boundary-value problems associated with
three main classes of flows in ship and offshore hydrodynamics:
(i) diffraction-radiation of regular waves by a large stationary body such
as an offshore structure or a moored ship in water of uniform finite depth,
(ii) flow around a ship that steadily advances in calm deep water, and
(iii) wave diffraction-radiation by a ship that advances at a constant
speed through regular waves in deep water.

1.1 Basic relations

The flow around a ship, of length L, that advances at a constant speed V;
along a straight path in calm water or through regular waves is considered
in this book. The special case V; = 0 that corresponds to a stationary body
such as an offshore structure, of size characterized by a length L, is also
considered. The acceleration of gravity is denoted as g, and T denotes time.

The flow due to the ship is observed from a Galilean frame of reference
and a related right-handed Cartesian system of coordinates (X,Y, Z) that
follows the straight path of the steadily advancing ship. The undisturbed
free surface is chosen as the plane Z = 0 and the Z axis points upward.
The X axis is taken along the track of the ship and points toward the ship
bow, as is shown in FiglT.]]

The wetted hull surface of the ship or offshore structure is denoted as
YH. The unit vector n = (n*,nY,n*) normal to the hull surface %# points
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Figure 1.1: Galilean frame of reference and related Cartesian system of
coordinates (X, Y, Z) used to analyze the flow around a ship that advances
at a constant speed in calm water or through regular waves.

into the water, i.e. outside the ship. The free surface and the flow region
outside ¥ are denoted as ©F and D, as is shown in Fig A point
within the flow domain D or at its boundary surface ¥ UXH is denoted as
X = (XY, 2).

The flow around the ship or offshore structure is analyzed within the
classical theory of incompressible inviscid flows. This theoretical framework
is realistic for wave diffraction-radiation by large bodies such as ships and
offshore structures of interest in the book [1,1]. The velocity of the flow
created by the ship is then given by

Vo= (Px,Py,Py) where V= (9x,0y,0z)
and the flow potential ®(X,T') satisfies the Laplace equation
V2 =V.-VO=0xx +Pyy + Pz =0 in D. (1.1)

At a large distance from the ship, the flow due to the ship vanishes and
the far-field boundary condition

®—0as VX24+Y2+ 22> (1.2)
holds. In water of uniform depth D, the sea-bottom boundary condition
by =0at Z=-D (1.3)

must be satisfied.

Two boundary conditions—known as the dynamic and kinematic free-
surface boundary conditions—must be satisfied at the free surface, which is
defined as

7 =7X,Y,T). (1.4)
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These boundary conditions are considered in the next section. In addition,
the flow-velocity component normal to the hull surface £ and the normal
velocity of the hull surface £ are equal at £#. The hull-surface boundary
condition is considered in section 1.4.

In the Galilean frame of reference that follows the ship, the flow velocity
is given by

where V& is the velocity of the flow created by the ship and the velocity
(—V4,0,0) is the apparent uniform stream that opposes the forward speed
of the ship.

The flow pressure P(X,T) is explicitly determined in terms of the flow
potential ® and the related flow velocity V& via the Bernoulli relation

P Ox —V)2+ 32 + 02 Py V2
L gz ey @xTW Ty 705 Pam Vo
Pw 2 Puw 2

where p,, denotes the density of water and P, is the atmospheric pressure.
One then has

(P_Patm)/pw“‘gzzvsq)X_(I)T_(@§(+®%+¢%)/2' (1'6)

Far away from the ship, i.e. in the far field, one has &7 ~ 0 and V& =~ 0
in accordance with the far-field condition (1.2]), and the Bernoulli relation

(1.6) becomes
P—Pym = —pwgZ .

Motions of both the water and the air below and above the free surface
Y occur concurrently with the motions of ©¥. Related variations in the
air pressure about the atmospheric pressure associated with unperturbed
conditions are proportional to the air density p4; in accordance with the
Bernoulli equation applied to air motions above . These variations of the
air pressure above the free surface have a negligible influence on the flow of
water below ©F because pgir < pw. The air pressure can then be regarded
as effectively constant at the free surface, equal to the atmospheric pressure,
for the purpose of determining the flow of water; i.e. the water-flow can be
analyzed independently of the air-flow. This decoupling of the flows above
and below a free surface does not hold for internal waves, for instance, where
the densities of the upper and lower fluids are nearly equal.

The flow pressures in the water and in the air are equal at the water-
air interface, except for the jump in pressure that can be sustained due
to surface tension. This pressure jump is proportional to the curvature of
the free surface, and can be neglected except for small-scale free-surface
deformations that have no practical effect at the scale of ships and offshore
structures. Thus, surface tension is ignored hereafter.



1.2 Free-surface boundary conditions

Dynamic free-surface boundary condition

The pressure at the free surface X can differ from the atmospheric pressure
P,y for some types of ships, notably hovercrafts. In such a case, the
pressure is given by

P=Pym +PF at 2F (1.7)
where P¥(X,Y,T) represents a distribution of pressure applied at . The
Bernoulli relation ([1.6) then yields

gZF =V, ox — &7 — (0% + 03 + @%)/2 - P/p, at £F (1.8)

where ®7 and V& are evaluated at the free surface Z = Z¥. This bound-
ary condition, called dynamic free-surface boundary condition, determines
the free-surface elevation Z¥(X,Y,T) in terms of the pressure P¥(X,Y,T)
applied at the free surface and the flow potential ®(X,Y, Z = Z¥|T).

In the particular case P¥'= 0 and ®; = 0, which corresponds to steady
flow around a common displacement ship that advances at a constant speed
V; in calm water, the dynamic free-surface boundary condition (|1.8)) yields

2927 =V72—[(V; = &x)*+ 83 + 7] < V2.
This expression yields the upper bound
9Z"/VE<1/2 (1.9)

for the elevation Z¥ of the free surface. The general upper bound
is important, e.g. because it determines whether a plane progressive wave,
and the bow wave created by a ship that steadily advances in calm water,
is steady or unsteady. [1,2]

Kinematic free-surface boundary condition

The kinematic free-surface boundary condition is now considered in the
general case when a flux of water, denoted as Q¥'(X,Y,T) and defined as
positive or negative if water is added or removed through the free surface, is
allowed. This general case is considered because it is required further on in
the formulation of boundary-integral flow representations based on Green
functions. The kinematic free-surface boundary condition is

(Ox Vi, ®y,®z) - n=Vn-QF (1.10)

where (®x —V,, @y, @) is the flow velocity (1.5), VI denotes the velocity
of the free surface X¥, n is the upward-pointing unit vector normal to %
and QT is the flux of water through X7
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Equation can be expressed as
FX,T)=2Z-Z"(X,Y,T)=0. (1.11)
At any given instant of time T', one has both
F(X,T)=0 and F(X+X',T)=0

if X and X + X’ are two arbitrary points of the free surface. In the limit
X’—0, one then has

0=FX+X,T)-F(X,T)=X-VF(X,T) .

This relation shows that the vector VF' is normal to the surface F' =0, as
is well known. The unit vector n normal to the free surface therefore is

n = VF/||VF| = (-Zk,~Z7 1) /\/1+ (Z2%)*+(Zy)? (1.12)

where (L.11)) was used. The vector n defined by (1.12) points upward.
Expression (1.12]) yields

n Ve = (b, ox 75 — oy 2E) /\/1+(25)*+(Z])? . (1.13)

A point X of the free surface F/(X,T) = 0 at some time 7" becomes the
point X+ V¥ (X, T)dT of the surface F(X+VEdT, T+dT) = 0 at the time
T+ dT, where VI(X,T) is the velocity of the free-surface point X at the
time 7. It follows that one has

0=FX+VPar,7+dT)-F(X,T) = (VF.VF+Fp)dT .

One then has
VI.VF = -Fr =2Zf

where ([1.11)) was used. This relation and ((1.12)) yield

VFon = VEVE/|VF|| = ZE 1+ (Z)2+ (2)? . (1.14)

The relations (1.10) and (1.12))-(1.14) finally yield the kinematic free-

surface boundary condition

Dy~ ZE+ Vi 25— ¥x 75 - ¥y ZE+ QF\[1+(ZE)2 4 (2E)2 =0 (1.15)
where V® is evaluated at the free surface Z = ZF (X, Y, T).
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Linearization

Both the kinematic boundary condition and the dynamic boundary
condition involve nonlinear terms. Moreover, the location Z = ZF
of the free surface, where the boundary conditions and hold, is
unknown. An analysis of wave diffraction-radiation by ships and offshore
structures based on the nonlinear free-surface boundary conditions (|1.15|)
and is then extremely difficult. Moreover, such an analysis might be
of limited interest because wavebreaking typically occurs if nonlinearities
are significant, and the potential-flow assumption underlying the boundary

conditions (1.15]) and (1.8)) is not justified in that case.

For most practical applications in ship and offshore hydrodynamics, the
nonlinear terms in the boundary conditions and are then either
neglected or taken into account via a perturbation analysis for ambient
waves of small amplitude [1,3]. The free-surface boundary conditions (|1.8)
and are applied at the plane Z = 0 of the undisturbed free surface in
a linear analysis, and also in a weakly nonlinear analysis.

The linear approximations to the free-surface boundary conditions (|1.8))

and (|1.15) are

gZ¥ =V, ox — ®7 — P¥/p,, , (1.16a)
by —2ZE+Vv,ZE+QF=0. (1.16b)

For a ship that steadily advances in calm water or through regular waves,
the linear boundary conditions are associated with the realistic and
practical Kelvin-Michell assumption that the velocity V@ of the flow created
by the ship is small in comparison to the ship speed V;. The linear dynamic
condition explicitly determines the free-surface elevation Z¥ in terms
of the flow potential ® at Z = 0 and the pressure P¥ applied at the free
surface.

In the special case of a ship that steadily advances in calm water, the
linear free-surface boundary conditions (|1.16]) yield

Ox/Vi=9gZ¥/V? if PF=0 (1.17a)

by /Vi=—2Z% if QF=0. (1.17b)

These expressions explicitly determine the velocity components ®x and ¢,

along the ship waterline in terms of the elevation Z%' of the free surface at
the ship waterline, i.e. the wave profile.

Substitution of expression (I.16a]) for the free-surface elevation Z¥" into
the linear kinematic condition (|1.16b)) yields

9Pz +Prr —2Vi®x7 + V7 ®xx = (ViPY —Pf)/pw —gQ" . (1.18a)
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This linear boundary condition can be expressed more compactly as
9@z + (Vi0x —0r)*® = (V,0x — 0r)P¥/pu — g QF . (1.18Db)

The boundary conditions (|1.18]) only involve the flow potential ® and its
derivatives at the plane Z = 0 of the undisturbed free surface. The free-
surface boundary condition (1.18a)) becomes

9Oz +Orr = —Pf/py,—gQF if V,=0. (1.18c¢)
The Bernoulli relation (|1.6) readily yields the linear approximation
(P—Patm)/pw+9Z =V 0x — @7 = (V;0x —0r)® (1.19)

to the dynamic flow pressure.

1.3 Steady and time-harmonic flows

A flow is not fully determined unless initial conditions are specified at some
time T . The basic issue of defining initial conditions for time-harmonic flows
associated with diffraction-radiation of regular waves by an offshore struc-
ture, and for steady and time-harmonic flows around a ship that steadily
advances in calm water or through regular waves, is now considered [1,4].

Ship that steadily advances in calm water

A steady flow around a ship that advances at a constant speed V; in calm
water can be assumed to slowly grow from rest at the time 7' = —oo in
accordance with the flow potential ®(X,T') defined as

(X, T)=®(X)e”T where 0 < v . (1.20)

The flow potential ® (X, T') satisfies the initial conditions ® = 0 and &1 = 0
at T = —oo, and steady state is obtained for ¥ = +0. The flow potential
can be associated with a ship hull ¥ that slowly grows from a needle-
like ship, which creates no flow disturbance, and a free-surface pressure
PFe?T and flux QFe” that slowly grow from P¥ =0 and Q¥ = 0, at the
time T' = —o0.

Substitution of expressions PFe”T and Q¥e¥” for the pressure and the
flux applied at the free surface, and expression (|1.20)) for the flow potential

into the Laplace equation (|1.1)), the far-field condition (1.2]) and the sea-
bottom boundary condition (|1.3]) yield

VZe=0inD, ®—=0as X =00, Pyp=0at Z=-D, (1.21)

7



while the linearized free-surface boundary condition ({1.18b)) becomes
9Oz + (Vidx —v)?® = (V,0x —v)P"/p, — g Q" at BF.

The growth parameter v = +0 in this boundary condition is crucial on
the left side but is inconsequential on the right side, which is merely a forcing
term that does not affect the dispersion relation as is made clear further on
in the book. The free-surface boundary condition associated with the flow
around a ship that steadily advances in calm water then becomes

9O+ (Viox —v)’® =V, PE/py — gQF at BF. (1.22)

Offshore structure in regular waves

The time-harmonic flow around an offshore structure in ambient regular
waves of frequency w can similarly be assumed to slowly grow from rest at
the time T = —oo in accordance with a flow potential

@(X,T):Re@(X)e(”*i“’)T where 0 < v . (1.23)

A time-harmonic flow is obtained for v = +0. The flow potential can
be associated with diffraction-radiation by an offshore structure in regular
waves of amplitude A that slowly grows as A e”” and a free-surface pressure
PF and flux QF that similarly grow as

PFev=i)T ang QFev—1)T (1.24)

Substitution of expressions ((1.23)) and (1.24]) into the Laplace equation
(1.1)), the far-field condition (1.2)), the sea-bottom boundary condition (1.3])

and the free-surface boundary condition (1.18¢c|) show that the potential ®
in (1.23) satisfies Laplace’s equation and the boundary conditions (1.21)
and the free-surface boundary condition

g®; — (w+iv)?® =iwPp, —gQF at ©F. (1.25)

The inconsequential term v = 40 is ignored on the right side of ((1.25)), as
in (1.22).

Ship that steadily advances through regular waves

The potential of the flow around a ship that steadily advances through
regular waves can also be expressed as in , where w now denotes the
encounter wave frequency (the frequency observed in the Galilean frame of
reference that follows the ship), associated with ambient regular waves of
amplitude Ae”” and a free-surface pressure P¥ and flux QF that slowly
grow from nil in accordance with expressions .
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Substitution of these expressions into the Laplace equation , the
far-field condition , the sea-bottom boundary condition and the
free-surface boundary condition show that the flow potential ® in
satisfies the Laplace equation and the boundary conditions (1.21]),
and the free-surface boundary condition

9O+ (Vidx +iw—0v)2® = (V,P¥ +iwP")/py —gQF at ©F (1.26)

where v is taken as v = 0 on the right side, as in ((1.22)) and (1.25)). The free-
surface boundary condition (1.26) is identical to (1.22)) or (1.25)) if V; =0

orw=0.

Free-surface elevation and flow pressure

Expressions ((1.16a) and (1.23)) determine the free-surface elevation Z" as

gZF =Re[V,Ox +iw® —P¥/p,le T, (1.27a)
The dynamic component of the pressure is defined by (1.19)) and (1.23]) as
Py/pw = (P—Pum)/pw+ 9Z =Re[V;ox +iwd]e '“T.  (1.27b)

The hydrostatic component g Z does not contribute to the dynamic pressure
defined in (|1.27b)). The inconsequential time-growth parameter v = +0 is

ignored in expressions (|1.27)).

1.4 Hull-surface boundary condition

The boundary condition at the hull surface 27 of a ship or offshore structure
is now considered.

Ship that steadily advances in calm water

The position of a ship that advances at a constant speed V; in calm water
is fixed (in the Galilean frame of reference that follows the ship) and the
flow-velocity component normal to the ship-hull surface ¥ is then nil. It
follows from that one has

n-Ve =V,n® at 27, (1.28)

The location of the hull surface £ is not known precisely a priori because
the flow, specifically the dynamic flow pressure distribution, around the ship
(especially at the hull bottom) causes the ship to experience a hydrodynamic
lift and pitch moment. As a result, the position of the ship is modified, i.e.
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differs from the position of the ship at rest. Specifically, the ship experiences
a vertical displacement and a rotation, called sinkage and trim. [1,5]

The boundary condition readsily yields
oy =V,n" —n"Ox —n*dy .
This expression and expressions then yield
nY Oy /V; =n"(1-gZ"/V?) +n*Z% . (1.29)

Expressions and explicitly determine the velocity components
(®x, Py, ®z)/V; along the ship waterline in terms of the elevation g Z/ V2
and the slope Z¥ of the free surface at the ship waterline. Thus, the flow
velocity at the ship waterline is explicitly determined in terms of the wave

profile via (1.17) and (1.29).

Offshore structure in regular waves

For an offshore structure in ambient regular waves, one has V; = 0 and the
flow velocity becomes V& +V ®* where V@ denotes the flow velocity
associated with the ambient waves. The hull boundary condition for an
offshore structure that is fixed (not allowed to move) in waves is then

n-Ve=-n Vo, (1.30)

The flow around a freely-floating offshore structure £ that undergoes os-
cillatory motions about a mean position X} is classically decomposed into
a ‘diffraction problem’, which corresponds to the hull boundary condition
for the offshore structure in its mean location $f, and 6 ‘radiation
problems’ associated with canonical oscillatory motions (surge, sway, heave,
roll, pitch, yaw) of X about its mean position 3 . The hull-surface bound-
ary conditions for these radiation problems are of the form

n-Vd=n -VH at ¥ (1.31)

where VH is the velocity of the hull surface ©¥. The boundary condition
(T.31) is enforced at the mean position Z{ of the offshore structure. [1,6]

Ship that steadily advances through regular waves

The flow around a ship that steadily advances through regular waves can be
expressed as the sum of a steady flow component that corresponds to the
flow around the ship advancing in calm water, for which the hull boundary
condition is , and a time-harmonic component that can be decomposed
into a diffraction-problem and six radiation-problems for which the hull
boundary conditions (applied at the mean position of the ship) are of the

form (1.30) and (|1.31).
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1.5 Nondimensional formulation

Nondimensionalization

Nondimensional coordinates x, time ¢, flow velocity V¢, potential ¢ and
dynamic pressure py are defined in terms of a reference length L.., the
acceleration of gravity g and the water density p,, as

x=—,t=T/=—,Vop= , 0= , PA= —— .
L, L, V9L, VgL, pw gLy

Nondimensional water depth d, free-surface elevation z¥', hull velocity v,
and free-surface flux ¢ and pressure p” are similarly defined as

(1.32a)

) y 4 = y = .
Lr \/gLr \/gLT Pw gLr

The wavelength A and wavenumbers K, K*, KY are nondimensionalized as

D ZF H F PF
F vH v ro @ F= (1.32b)

A=A/L, and (k,a,8)=(K,K* KY)L, . (1.32¢)

In the particular case of a ship that steadily advances in calm water, the
ship speed V} is often used instead of y/g L, as reference velocity. One has

v(I)—@and —Q
V, F LV, F

where F' is the Froude number defined in ((1.34]).

(1.33)

The Froude number F, the nondimensional frequency f, and the related
nondimensional parameters 7 = Ff and S = F/f are defined as

Vi L Viw F 74
F=-—Z2_ f=w/|—=,7=Ff="22,8==~=- 1.34
VgL, g g [ wLy (1.54)

where S is the inverse of the usual Strouhal number. The nondimensional
time-growth parameter € is defined as

e=v+/L,/g .

The analysis given further on shows that the waves created by an off-
shore structure are conveniently analyzed in terms of the nondimensional
‘frequency-scaled’ coordinates and Fourier variables

wiJX and (a¥ 8% k%) = (a’fi’ k)

associated with the choice of reference length L, = g/w?.

x¥=f’x=

= % (K* KY, K) (1.35a)
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It is also shown further on that the waves created by a ship advancing
at a constant speed V; in calm water are conveniently analyzed in terms of
the nondimensional ‘speed-scaled’ coordinates and Fourier variables

X V2
=2 =92 and (", BV, k) = F*(a, B,k) = ?(Kx,K‘%K) (1.35b)

associated with the reference length L, = V?/g.
Lastly, the nondimensional coordinates and Fourier variables

Vi

sz X _wX and (a” 8% k%) = S(a,B,k) = = (K% KY, K) (1.35¢)
w

S~V
are shown further on to be well suited to analyze the flow around a ship
that steadily advances through regular waves in the regime 0.3 < 7. These
nondimensional coordinates and Fourier variables are associated with the
reference length L, =V, /w.

X

The reference lengths L,. that correspond to the three alternative scalings
are related to the free waves created by a ship or an offshore structure.
Accordingly, these three reference lengths are independent of the length
L that characterizes the size of the ship or the structure, which has no
significant influence on the wavelength of far-field free waves. However, the
reference length L, in expressions — is commonly taken as the
length L, that characterizes the size of the ship or structure to analyze
near-field flows around ships or offshore structures.

Nondimensional boundary-value problems

The nondimensional flow potential that corresponds to the flow potential

(1.23) can be expressed as
b(x,t) = Regp(x) eIt (1.36)

The relations (1.21)), (1.26]), (1.28)-(1.31) then show that the spatial com-
ponent ¢(x) of the potential ¢(x,t) in (|1.36) satisfies the Laplace equation

Vigp=0l¢p+0,0+092¢=0in D, (1.37a)
the far-field condition
¢ —0as x =00, (1.37b)
the sea-bottom condition
0.¢0=0at z=—d, (1.37¢)

the free-surface boundary condition

0.6+ (FO, +if— €26 =(Fd, +if)p"—q" at & (1.37d)
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where € = +0, and the hull boundary condition

Vo -n=qg at ¥ where (1.37e)

Fn” f=0
H _ .
e {n~V¢“ orn'vH} if {f%O} ' (1.38)
The boundary-value problem defined by the Laplace equation (|1.37a))
and the boundary conditions ([1.37bte) is considered hereafter for a general
but presumed known flux ¢! in the boundary condition (1.37¢) and for
general, also presumed known, pressure pf” and flux ¢ in the boundary

condition (|1.37d)) at the free surface.

The three general boundary-value problems, formulated in nondimen-
sional form in accordance with the nondimensionalization , that de-
termine the flow potential associated with diffraction-radiation by an
offshore structure in regular waves or the flow around a ship that steadily
advances in calm water or through regular waves are defined by .

The corresponding free-surface elevation and flow pressure are now con-

sidered. The free-surface elevation 2% is determined by (1.27a) as
2P =Re(Fop+ifo—p)e 7t where x € ©F (1.39a)

and ¢ and ¢, are evaluated at the plane z = 0 of the undisturbed free
surface. Expression ([1.27b|) for the dynamic flow pressure similarly yields

pa=Re(Fo, +ifo)e V' where x €D (1.39h)

Expressions b) explicitly determine the nondimensional free-surface
elevation z¥ and the dynamic pressure pq in terms of the flow potential ¢
(at the undisturbed free surface ¥ or in the mean flow domain D) that is
given by the solution of the boundary-value problem .
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PART 1 : Far-field waves
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Chapter 2

Basic and generalized
elementary free waves

This chapter considers the boundary-value problem ([1.37)) that determines
the spatial component ¢(x) of the flow potential

¢(x,t) = Re p(x) e (71! (2.1)

associated with an offshore structure in regular waves or a ship that advances
through regular waves or (if f = 0) in calm water at a large distance from
the ship or structure, i.e. in the far field where the flow predominantly
consists of free waves that propagate with little influence from the ship or
structure.

Basic elementary wave functions that satisfy the Laplace equation
and the boundary conditions d) at the sea bottom and at the
free surface are obtained for € taken as ¢ = 0 in and . These
elementary waves are subsequently modified to satisfy the initial conditions
consistent with € taken as ¢ = +0 in and the far-field condition ,
in addition to the Laplace equation and the boundary conditions at the sea
bottom and at the free surface already satisfied by the basic elementary
waves that correspond to € = 0. This two-step analysis, in which the cases
€ = 0 or € = +0 are successively considered, clearly illustrates the crucial
role of the initial conditions associated with the time-growth parameter e

in @1) and (L37). [2,1]

The second step of the two-step analysis expounded in this chapter shows
that far-field waves can be expressed as a linear superposition of elementary
plane waves that are consistent with initial conditions associated with a flow
that starts from rest and satisfies the Laplace equation 7 the far-field
boundary condition , the sea-bottom boundary condition and
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the free-surface boundary condition (2.3d)) with ¢ = +0.

2.1 Near-field flow and free waves

The flow created by an offshore structure in regular waves, or a ship that
advances in calm water or through waves, can be decomposed into a local
flow and waves. The local-flow component in this fundamental flow decom-
position vanishes rapidly away from the body (ship or offshore structure).
Specifically, the flow velocity V¢! that corresponds to the local-flow com-
ponent decays as 1/h% as h — oo, where h = /22 + y? is the horizontal
distance from the body [2,2]. However, the flow velocity V¢" associated
with the waves created by the body decays at a much slower rate than
the local-flow velocity V¢r. Specifically, basic considerations of the energy
transported by the waves created by the body [2,3] show that V¢" vanishes
as 1/v/h. One then has

VoW ~ 1/Vh and Vb ~1/h% as h= /22412 — oo . (2.2)

At some distance from a ship or offshore structure, the local-flow velocity
Vol is then negligible in comparison to the wave component V", and the
waves created by the body (ship or structure) propagate ‘freely’ under little
influence from the body, which mostly determines the initial amplitude of
the waves. Indeed, the near-field boundary condition at the body surface
determines the initial amplitude of the waves created by the body, but has
no appreciable influence—except in a small near-field region in the vicinity
of the body—on the propagation of the waves away from the body that
created them. Accordingly, the waves at some distance from a body are
commonly called ‘free waves’.

Thus, the flow potential ¢ (x) associated with far-field free waves satisfies
the Laplace equation

V2p=02+024+0)¢p=0in —d<2<0, 2.3a
xT Y z

the far-field condition
¢ —0 as x = 00, (2.3b)

the sea-bottom condition
0.0=0 at z=—d, (2.3¢)
and the free-surface boundary condition
0.0+ (Fo, +if—e)>¢p=0 at 2 =0 where e = +0. (2.3d)

The near-field free-surface pressure p’ and flux ¢* in are ignored in
because they are assumed to be nil except (eventually) in the vicinity
of the body. Similarly, the hull boundary condition is ignored in the
far-field analysis considered in this chapter.
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2.2 Elementary waves and
dispersion relations

An essential property of the incomplete boundary-value problem, called
‘far-field boundary-value problem’ for convenience hereafter, defined by the
Laplace equation and the three boundary conditions d) is that
these homogeneous equations have nontrivial solutions, i.e. eigensolutions.
These eigensolutions, which correspond to elementary waves, are considered
first for the special case when the time-growth parameter € in the free-
surface boundary condition is taken as € = 0. The case € = +0 is
subsequently considered in sections 2.8-2.10.

Laplace’s equation, sea-bottom and free-surface conditions

The far-field boundary condition , although relevant for a far-field
study, is ignored at this stage of the analysis, which considers elementary
wave functions that satisfy the Laplace equation , the sea-bottom
condition and the free-surface condition with € =0, i.e.

Vigp=(07+0,+02)p=0in —d<z<0, (2.4a)
0.6=0 at z=—d, (2.4b)
0.0+ (FO, +if)*¢=0at 2=0. (2.4c)

Elementary wave solutions and dispersion relations
The wave function
W(x) = ' (“*F8Y) cosh [k (2 + d)] /cosh(kd) (2.5)
satisfies the sea-bottom condition and the Laplace equation if
k=+va2+p2. (2.6)
The wave function also satisfies the free-surface condition if
A(f,a,B;F,d) = (f+Fa)®>—ktanh(kd) = 0. (2.7)
The relation A = 0 is called dispersion relation, and the related function
A(f,a,B; F,d) is the dispersion function, for the waves created by a ship
that steadily advances through regular waves in water of uniform finite

depth.
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In the deep-water limit d = oo, the elementary wave function (2.5 and
the dispersion relation (2.7)) become

W(x) = el (@2+BVFTk2 where k =/a?+32 (2.8)
and A(f,a,8;F)=(f+Fa)>~k=0. 2.9

The deep-water dispersion relation (2.9)) is significantly simpler than the
dispersion relation (2.7)) for finite water-depth, which involves a hyperbolic
function and the additional parameter d that defines the water-depth.

The dispersion relations and define curves in the Fourier plane
(a0, B). These curves are called dispersion curves. E.g., in the particularly
simple case of diffraction-radiation of regular waves by an offshore structure,
the dispersion relation becomes

A(f, o, B;d) = f>—ktanh(kd) =0 . (2.10)

This dispersion relation has a single root and therefore defines a single
dispersion curve, a circle centered at the origin of the Fourier plane («, ).

The dispersion function A(f, «, 8; F,d) and the related dispersion rela-
tion and dispersion curves A = ( are essential elements of potential flows
around ships and offshore structures. The term Fa in the dispersion re-
lations and stems from the fact that the flow is observed from
a Galilean frame of reference that advances at a (nondimensional) speed
F' in the direction of the positive x axis. In a ‘sea-fixed’ frame of refer-
ence (Tsea, Ysea, Zsea), ON€ has F =0 in , and this dispersion relation
becomes

A (foeara, B;d) = 2, — ktanh(kd) = 0 (2.11)

sea
in agreement with (2.10)).
Expressions (2.1)) and (2.5]) define the flow potential associated with the
elementary wave function W (x) as

cosh[k(z+ d)]

561 wh t= — ft. 2.12
cosh (k) cos@' where 0°'=ax+ Sy — ft (2.12)

(/b\(X,t) =

Notations

The notations

h = (z,y) = h(cost,siney) , Vh = (05,0y) , (

=va?2+p5% |, k=(a,8) = k(cosv,siny) , Vik = (0a,95), (2.13b
0=ax+Py=k-h=khcos(y— 1) and (2.13c

Ok = (a/k) 0o + (B/k) 03 = (cosy) Dq + (siny) d3 (2.13d
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are used hereafter. The wavenumbers k, o and § are nondimensional in

accordance with (1.32¢)). The differential operator 9y defined by (2.13d)

denotes differentiation along the radial direction («,3)/k.

Encounter wave frequency
In a ‘sea-fixed’ frame of reference (Zseq, Ysea, Zsca) Where
Tsea =T +Ft | Ysea =y and zgeq = 2, (2.14)

the phase ' in expression (2.12) for the potential of an elementary wave
observed from a moving frame of reference is given by

oegea :O‘-T'sea“’ﬂysea_fseat:a(:C_FFt)_Fﬁy_fseat
G{.’E-i-ﬁy—(fsea—FOé)t:Oé.T-i-ﬁy—ft

where fs., denotes the wave frequency in the sea-fixed reference frame.

Thus, a wave frequency fse, in the sea-fixed reference frame corresponds
to the encounter frequency

= fsea — Fao = fseq — Fk cosvy (2.15)
in the moving frame of reference considered in (2.12)). The relation (2.15)
yields f = fsea if ¥ = £90° (beam seas), f < fseq if —90° < v < 90°

(following seas) and fseq < f if 90° < v < 270° (head seas). In the particular
case of a ship that advances at a constant speed in calm water, one has f =0

and expression ([2.15) yields

fsea = F'k cosvy .

Phase velocity
Expression (2.12) for #% and the relations (2.13) yield
0'=k-h— ft and d0'/dt =k -dh/dt—f.

It follows that an observer traveling at the velocity dh/dt = v,, given by

_ k_ fk f{cosy
Vp_vpk_kk_k{sin'y} (2.16)

sees a constant value of the phase 0%, e.g. a particular wave crest. The
velocity v, defined by (2.16) is then called the ‘phase velocity’.
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Thus, a wave crest, or more generally a constant-phase line associated
with a given value of the phase #?, advances along the normal to the wave-
crest line, i.e. in the direction

Vh0'= (0,0"0,0") = (o, B) = k(cos,siny) =k ,
at a velocity
v, = v, (cosv, siny) = v, k/k with v, = f/k .

In the particular case of a ship that advances at a constant speed in calm
water, one has f = 0 and expression yields v, = 0, in accordance
with the fact that the waves created by the ship appear steady (frozen) in
a Galilean frame of reference that follows the ship.

In a sea-fixed frame of reference, expression (2.16)) becomes

sea sea k fsea k
Vp = 'Up E = k E (217)

where fseq and k are related via the dispersion relation (2.11)).

Alternative representations of dispersion relations

The dispersion relation means that the wave frequency f and the
wavenumbers o and (3 of waves created by a ship that advances at a given
(nondimensional) speed F' in water of uniform finite depth d are related.
The relationship between the frequency f and the wavenumbers a and 3,
the Froude number F' and the water depth d can be expressed via an implicit
equation

A(f,a,B;F,d) =0 with k =+/a?+ 52, (2.18a)

as in (2.7). Alternatively, this dispersion relation can be used to determine
the frequency f in terms of the wavenumbers o and 3, the Foude number
F and the water depth d via an explicit equation

f=f(a,B;F,d) where k =+v/a?+ (2. (2.18b)
The alternative ‘implicit’ or ‘explicit’ forms (2.18a)) and (2.18b)) of the

dispersion relation yield
Aprdf +Aqsda+AgdB =0 or df = foda+ fzdf . (2.19)
The two differential relations yield
(Ao +Affa)da+ (Ag+Arfz)dB=0.
This differential relation yields the relations

fa = —Aa/Af and fg = —Aﬁ/Af . (2.20)
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The notation

VA = (A, Ag) = —|| Vi Al|(cosd, sind) (2.21a)

where [|[Vi Al = (/A2 + A% (2.21b)

is used further on. The vector Vi A is orthogonal to a dispersion curve
A = 0, and § denotes the angle between the vector —Vix A and the axis
B = 0 in the Fourier plane (a, 3). Expressions (2.21a)) and (2.13b]) yield

Akl _ oD+ BAs|/K

Vi All /A2 4 A2

This relation is used further on.

= |cos(y—d)] . (2.22)

2.3 Group velocity

The wave function W defined by , where k is given by and the
wavenumbers « and 3 satisfy the dispersion relation , is an elemen-
tary solution that satisfies the Laplace equation and the boundary
conditions and at the sea bottom and the free surface. The
flow potential ¢V given by a superposition of elementary wave functions

W also satisfies the homogeneous equations (2.4). An interesting special
superposition of two elementary wave potentials (2.12]) is now considered.

Specifically, these two elementary waves have frequencies f and f+ df,
and wavenumbers («, ) and (a + da, 8 + 683), where the differences df,
da and §8 are small. The related wavenumbers k and k 4 0k are given by
k=+/a?+ 5% and dk =~ (ada + $5)/k. The amplitudes of the two waves
are denoted as a and a’, where a’ can be equal to a or can differ from a.

At the free-surface plane z = 0, expression (2.12) shows that the poten-
tial of these two superposed elementary waves is given by

aRee'® +a'Reel®+99) = yRem el where (2.23a)

m=1+ (d'/a)e'®® and 66" =z da+ydB —tof . (2.23b)

The potential 1' corresponds to a wave a Rem e'?" with a modu-
lated complex amplitude ma. Expressions (2.23b|) show that the modula-

tion factor m is also a wave, with frequency df and wavenumbers (da,00).
Expressions (2.23b]) and (2.19)) yield

déot  _ dx dy B dx Of dy of
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An observer advancing at the velocity v, = (vg,vY) where

vy =dz/dt = fo and v} =dy/dt = f (2.24)

observes a constant value of the modulation factor m, i.e. advances at the
velocity—called group velocity—of the group of modulated waves defined
by (2.23), and observes waves that have the same amplitude.

Since the energy transported by a wave is proportional to the square a?

of the wave amplitude a, an observer advancing at the group velocity v,
observes the same wave energy, which is then transported at a velocity that
is equal to the group velocity. Thus, the velocity v. at which wave energy
is transported is equal to the group velocity vy, an important basic result
of the theory of water waves.

The relations (2.24), (2.13b), (2.20) and (2.21a) yield the alternative
expressions

— vg _ fOé _ _ -1 Aa _va
s e

for the group velocity v,. The vector Vi A associated with a dispersion
function A is orthogonal to a dispersion curve A = 0. Thus, expressions
show that the group velocity v, at a point («, ) of a dispersion
curve is orthogonal to the dispersion curve. Expressions show that
the magnitude v, of the group velocity v, is given by

\JAZ + A?
(vE)2 + (vd)? = VAT 2. (2.25b)

g Arl Ay

Vg

Expressions (2.25atb) then yield

Vg . 7VkA
vy B AT

The relations ([2.25afc) explicitly determine the group velocity v, in terms
of the dispersion function A. Expressions (2.25¢) and (2.21) also yield

vy ) cosd
vy = {vi} = sign(Ay) vy {siné} (2.25d)

g

(2.25¢)

This relation shows that the angle between the group velocity v, and the
axis f=0isdor d+mif 0 < Ay or Ay <O0.

In a sea-fixed frame of reference, expression ([2.25a)) becomes
sea __

Vk ASEG/
= (2.26)
f
where A%¢® is the dispersion relation (2.11]).
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2.4 Dispersion functions

The dispersion function A(f,«,(;F,d) related to the free waves created
by a ship that steadily advances through regular waves in water of uniform
finite depth is now considered.

The derivatives of the dispersion function A (f, «, 8; F, d) given by (2.7))
with respect to the wave frequency f and the wavenumbers o and 3 are

Ay =2(f+Fa) (2.27a)
A, = 2F(f+Fa) — [tanh(kd) + kd/cosh?(kd)]a/k ,
Ay = —[tanh(kd) + kd/cosh®(kd)] B/k .

The alternative expressions

A, =2F(f+Fa)— (14 s?)tanh(kd) o /k and (2.27h)
Ag = —(1+ s¥)tanh(kd) 8/k (2.27c)

follow from the identity

tanh(kd) + (kd)/cosh®(kd) = (14 s?)tanh(kd) = t¢ (2.28a)
where s¢ and t¢ are defined as

s = (2kd)/sinh(2kd) and t? = (1+ s%)tanh(kd) . (2.28b)

One has 0 < t¢ < 1 and 0 < s < 1 as kd increases within the range
0<kd<oo.

The derivative of the dispersion function A(f, «,3;F,d) in the radial
direction («, 8)/k is given by

Ay = (a/k) Ay + (B/k) Ag = Ay cosy + Agsiny (2.29)
in accordance with (2.13d). Expressions (2.29), (2.27bfc) and (2.6) then

yield
A =2F(f+Fa)a/k— (14 s?)tanh(kd) . (2.30)

Particular cases

Expressions (2.27)), (2.30)), (2.13b)) and (2.28b]) yield

A, cosy
Ap=2fand { Agp=—{siny pt? if F=0 (2.31a)
Ay, 1
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i.e. for an offshore structure in regular waves,

Ay =2Fa = 2Fkcosy

Ay = 2F?%k —tYa/k = (2F%k — t%) cosry
Ap=—t1p/k = —tsiny

Ay =2F?a%/k — t? = 2F%k cos?y — t¢

if f=0 (2.31D)

i.e. for a ship that steadily advances in calm water, and

A =2(f+Fa)=2(f+Fkcosy)

Ay =2F(f+Fa) —a/k =2F(f+ Fkcosvy) —cosy
Ag=—p/k = —siny

Ap=2F(f+Fa)a/k —1=2F(f+ Fkcosy)cosy —1

if d =00 (2.31c)

i.e. in deep water, for which expression ((2.28b)) yields s = 0 and t? = 1.

In a sea-fixed frame of reference, it readily follows from (2.10]) and (2.11])
that expressions (2.31al) become

ASe cos7y
AF" =2 foeq and ¢ AF* 5 = — < siny td (2.32)
Aiea 1

where the dispersion relation A®¢® is given by ([2.11).

2.5 Phase and group velocities

The expressions for the derivatives of the dispersion function A (f, a, 8; F, d)
given in the previous section can readily be applied to determine the group
velocity v, and the phase velocity v, of the waves created by a ship that
steadily advances through regular waves in water of uniform finite depth.

Expressions (2.25a)), (2.27) and (2.7)) show that v, is given by

o= {1} L2 I (o) ()

where (cosv, siny) = k /k and s? is given by . The component (—F, 0)
on the right of stems from the fact that the flow is observed from a
Galilean frame of reference that advances at a (nondimensional) speed F in
the direction of the positive x axis. Expressions and yield

VT ) tanh(kd cosYy
v, = {vg}} = <s1gn(f—|—FOz) # —FCOS’Y> {sin’y} (2.33b)
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kd
Figure 2.1: Function vJ(kd) defined by (2.34b) for 0 < kd < 3.

The group velocity v, and the phase velocity v, are not colinear except if
F =0, i.e. for diffraction-radiation of regular waves by an offshore structure.

In this special case, expressions ([2.33)) become

[tanh(kd) [cosy
Ve =\ T {sin'y and vy = vV, (2.34a)

where vo = LE8% _ L[} 2kd
P N sinh (2kd)

5 3 (2.34D)

and (|2.28b)) was used. Expression ([2.34b]) yields

1/2 <wv§ <1with vJ = 1/2 as kd — oo and v — 1 as kd — 0.

The function vg defined by (|2.34b]) is depicted in Fig for 0 < kd < 3. For
diffraction-radiation of regular waves by offshore structures in deep water,
i.e. for F' =0 and d = oo, one has s¢ = 0 in (2.33a)) and expressions ([2.34)
yield

v, = (cosy,siny) /Vk and v, = v, /2. (2.35)

In a sea-fixed frame of reference, the group velocity v/ and the phase

velocity v;°* are colinear, in agreement with (2.34a)). Specifically, one has

tanh(kd) k
v, " = sign(fsea) anT() = and v, = v vy (2.36)

where v is given by (2.34b).
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ks’.d
Figure 2.2: Functions 1/k“ and tanh(d“k*) for d* = 3, 1 or 0.3.

In the general case F' # 0, expressions (2.33a) and (2.36) show that

the group velocity v, can be expressed as the sum of the apparent uniform
current (—F,0) associated with the moving Galilean frame of reference and

the group velocity v;® in a sea-fixed frame of reference, i.e. one has

v, " = Vg + Venip where vy, = (F,0) (2.37)

is the ship speed. The basic relation (2.37)) between velocities observed in
different Galilean frames of reference does not hold for the phase velocity
v,. Specifically, one has

v, = vy, + F(cosy) k/k

Thus, one has v,°* # v, + Vgpip in accordance with the fact that the phase

velocity is fundamentally different from a flow velocity.

2.6 Offshore structures in regular waves

Diffraction-radiation of regular waves by an offshore structure in water of
uniform finite depth d is now considered. The dispersion relation (2.10]) can
be expressed in the ‘frequency-scaled’ form
1 k K 2D
— =tanh(d“k") where k¥ = 92 an = =2

ke

in accordance with ([1.35al).



exact
0.2 ----shallow ]

Figure 2.3: Root of the dispersion relation (2.38) and related deep-water
and shallow-water approximations ([2.39b|) for 0 < d“ < 4.

Fig shows that the dispersion equation (2.38]) has a single real root,
denoted as k¥ (d“), and therefore defines a single dispersion curve for every
value of d“. This dispersion curve is the circle

ke = k¥ (d¥) (2.39a)

centered at the origin of the Fourier plane. The root k¥ (d“) of (2.38)) is
depicted in Fig[2.3], where the deep-water and shallow-water approximations

1+ (1+11d%/60)d“/6
A /dw

k¥ ~1 as d*— o0 and kY ~ as d¥— 0 (2.39b)

are also shown.

The dispersion relation (2.38)) yields
1/kZ(d”) =tanh[d“ k2 (d“)] <1.

One then has
1=kZ(c0) <Ek¥(d) . (2.40a)

The corresponding wavelength A = 27/k* is given by
WA 27 27

NEPAE T %@ S )

=\ =27 (2.40D)

Thus, for a given wave frequency f, the wavelength A* decreases as the water
depth d decreases, i.e. time-harmonic waves are shorter in finite water depth
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dh.)
Figure 2.4: Phase and group velocities v and vy given by (2.41) for
diffraction-radiation of regular waves by an offshore structure in water of
uniform depth 0 < d¥ < 4.

than in deep water. The relations (2.40b|) yield
A < AP =27g/w?. (2.40c)

Expression (2.40c)) for the deep-water wavelength A%¢°P shows that AeeP
is smaller than a characteristic length Ly related to the size of an offshore
structure if

w\/Ly/g > V21~ 2.5 or \/L./g/T > 1/V27 ~ 0.4
where T,, = 27 /w denotes the wave period.

As was already noted, expressions (2.33)) with F' = 0 show that the phase
velocity v, and the group velocity v, are colinear, with magnitude given by

tanh (d“ k) 1 2d¥ kY
o [EEC ) Pl § N S P 2.41
o e v 2[ T Snh(2deke) | (2.41)

where v* = Vw/g and k¥ (d“) is the root of the dispersion relation (2.38).
Expressions yield v ~ vy /2 in the deep-water limit d*k“ — oo, and
vy ~ v, in the shallow-water limit d“k“ — 0, as can be observed in Fig

where the phase velocity v, and the group velocity vy’ given by are

depicted.

As was also noted previously, the dispersion relation (2.38|) defines a
single dispersion curve, a circle centered at the origin £ = 0 of the Fourier
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Figure 2.5: The figure illustrates—for the simplest case of diffraction-
radiation of regular waves by an offshore structure in deep water—the basic
properties that the group velocity v, is orthogonal to the dispersion curve
(the circle k = f?) in the Fourier plane (c,3), and the phase velocity v,
is orthogonal to the wave crests (a series of concentric circles) in the free
surface plane (z,y).

plane. Moreover, the corresponding waves (e.g. wave crests) are shown
further on (in section 3.5) to consist of a series of concentric circles centered
at the origin h = 0 of the (physical) free-surface plane z = 0. Thus, the
group velocity v, = vyk/k is orthogonal to the dispersion circle in the
Fourier plane («, 8) and the phase velocity v, = v,h/h is orthogonal to the
circular waves in the free-surface plane (z,y), as is illustrated in Fig for
deep water.

2.7 Superposition of basic elementary waves

As was already noted in section 2.3, the flow potential ¢" associated with
a superposition of elementary plane wave functions W along the dispersion
curves defined by the dispersion relation A (f,«,3; F,d) =0, i.e.

»"(x) :AZO /A:ods a® W(x,a,3) where (o, B)€(A=0), (2.42)

satisfies the Laplace equation and the boundary conditions and
at the sea bottom and the free surface. In , the summation is
performed over all the dispersion curves, the point («, ) lies on a dispersion
curve, and W(x, «, 3) is the elementary wave function . Furthermore,
ds =+/(da)? + (d3)? denotes the (nondimensional) differential element of
arc length of a dispersion curve and a® represents a general wave-amplitude
function. Expression assumes that the dispersion curves are defined
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in terms of parametric representations in which the arc length s is taken
as the parameter, although alternative parametric representations of the
dispersion curves can be used.

Thus, free waves and the corresponding flow potential ¢"(x) in
can be represented as a one-dimensional Fourier superposition of elementary
plane waves, defined by the wave function W, along the dispersion curves
determined by the dispersion relation A(f,«,8;F,d) = 0. However, the
elementary wave function W in the Fourier superposition corresponds
to e = 0 in (2.3d). It follows that the elementary wave function W defined
by , and the related Fourier superposition , do not account for
the initial conditions associated with the choices 0 < € or € = 40 in (2.1)).

The Fourier superposition is not a satisfactory representation of
free waves. For instance, this representation of free waves does not preclude
ship waves ahead of a ship that advances in calm water. A satisfactory flow
representation requires initial conditions, as in |2__1D with € = 40. Alterna-
tively, € could be taken as e = 0 in and @ if an additional condition,
commonly called ‘radiation condition’, is imposed [2,4]. A straightforward
analysis associated with € = 40 and a flow that grows from rest at time
t = —oo is used in the book, and a generalized elementary wave function
that accounts for initial conditions and the far-field boundary condition
is defined in sections 2.8 —2.10.

Specifically, the spatial component ¢(x) of the flow potential related
to the far-field boundary-value problem for an offshore structure in
regular waves or a ship that steadily advances through regular waves or
(if f = 0) in calm water with the ‘time-growth’ parameter e in the free-
surface boundary condition taken as e = +0, instead of € = 0, is now
considered. The elementary wave function given by — is generalized
to satisfy initial conditions that correspond to a flow starting from rest at
time ¢ = —oco, and the far-field condition (2.3b).

2.8 Initial conditions

Thus, elementary wave functions associated with 0 < € in the free-surface
boundary condition (2.3d), or equivalently the ‘complex frequency’ f+ ie
in (2.1), are now considered.

These elementary waves can be determined by considering the complex
wavenumbers

a+ieay; , f+ief , k+ieky (2.43)
in the elementary wave function (2.5)), which is then generalized as

i(ax+By)—€e(arz+pP1y) COSh[(k+1€k1)(z+d)] 2 44
¢ cosh[(k +iek)d] (244)
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Sea-bottom boundary condition and Laplace’s equation

The elementary wave function ([2.44) satisfies the sea-bottom condition
(2.3c), and also satisfies the Laplace equation ({2.3al) if

(k+iek))? = (a+iear)?+ (B+ieh)?. (2.45a)

This condition is satisfied exactly, not only for 0 < € < 1 but for every
value of €, if

E=a0?+p3%, kki=aa;+Bb and k¥ =l + 57 . (2.45Db)

The condition (2.45a) and the equivalent conditions (2.45bf) are satisfied if
(a1, B1, k1) are proportional to («, 8, k), i.e. if

(a1, B1,k1) = (o, B, k) /1n (2.45c¢)

where p denotes a proportionality factor.

Free-surface boundary condition

Furthermore, the elementary wave function (2.44)) satisfies the free-surface
condition ([2.3d)) if

[f+ie+Fa(l+ie/u))*=k(1+ie/u)tanh[kd(1+ie/p)] (2.46)

where the relations oy = a/p and k; = k/u were used in accordance with
(2.45c)). The Taylor series of the free-surface boundary condition (2.46]
about € = 0 yields

(f+Fa)®+2ie(f+Fa)1+Fa/u) = ktanh(kd) +ie(1+ sk tanh(kd)/u

where O(e?) terms are ignored and expression ([2.28a]) was used on the right
side. The O(1) and O(i€) terms in this expansion are

(f+Fa)?= ktanh(kd) , (2.47)
2(f+Fa)(1+Fa/u) = (1+s*) ktanh(kd)/u .

The O(1) relation ([2.47) is the dispersion relation (2.7 previously obtained
for e = 0, and the O(i€) term determines the proportionality factor p in

(2.45¢) as
p=(f+Fa)(1+35%)/2 - Fa (2.48)

where (2.47) was used and s? is given by (2.28b]). Expressions (2.45c|) and
(2.48)) determine the complex wavenumbers «ay, 51, k1 in ([2.43).
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Alternative approach

Expression (2.48) can be obtained in another way, now considered. The
dispersion relation (2.46)) corresponds to the limit e — 0 of the dispersion
relation

A(f+ie,a+iear,f+ieb;F,d)=0 (2.49)

associated with the dispersion relation A (f, «, 8; F,d) = 0 defined by
and the complex frequency and wavenumbers in the related wave
function . The Taylor series expansion of the dispersion relation
about € = 0 yields

A(f,a,B;Fd) +ie(Ap+ a1 Ay +B1Ag) +0(e2) =0. (2.50)

The O(1) relation (2.50)) is the dispersion relation (2.7, already obtained
for ¢ = 0, and the O(¢) term determines the proportionality factor p in

(2459 as
/,L:—(OéAa-FBAB)/AfE—k‘Ak/Af (2.51&)

where Ay, is the derivative of the dispersion function A (f, a, 5; F,d) in the

radial direction (a, 8)/k, as in (2.29). Expressions (2.27a)), (2.30) and (2.7))
then yield
p=—kAp/Ar=(f+Fa)(1+5%)/2 —Fa (2.51b)

in agreement with (2.48). The proportionality factor u defined by (2.51b)
can be expressed as

p=c"y where i/ = |p| =k|Ag|/|Af| and (2.51c)
o® = —sign(AfAy) (2.52)

This expression determines the sign function o2 in terms of the dispersion
function A.

Application to ships and offshore structures

In particular, expression ([2.52)) yields
o® =sign[(f+Fa)(1+s%)/2 — Fa] (2.53a)

for a ship that steadily advances through regular waves in finite water-depth.

Expression (2.53a) becomes
o2 =1if F=0 and o¢° = —sign(a) = —sign(cosy)if f=0, (2.53b)

i.e. for an offshore structure in regular waves or a ship that steadily advances
in calm water, and

o® =sign(f — Fa) =sign(f/F — a) if d= oo, (2.53¢c)

i.e. in deep water.
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2.9 Far-field boundary condition

The relations (2.44]), (2.45¢) and (2.51c) yield the elementary wave function

cosh[k (1+0%ie/u’)(2+d)] pilaztBy)—ode(aztpy)/u (2.54)
cosh[k (1+ o2 ie/p')d] ' '

The elementary wave function with 0 < e < 1 and the dispersion
relation was already shown to satisfy the Laplace equation and
the boundary conditions (2.3c) and (2.3d)) at the sea bottom and the free
surface. The elementary wave function (2.54) vanishes in the far field if
0 < o®sign(az + By) = o® sign(f) in accordance with expression ([2.13c)
for the phase 6.

The polar representations (2.13b)) and (2.13a)) for the Fourier variables
« and 8 and the horizontal coordinates x and y then show that bounded
elementary waves are obtained if 0% = 02, where ¢? is defined as

0¥ = sign () = sign[cos(y— )] = sign(az+Ly) . (2.55)

The condition ¢ = ¢ and expression (2.55)) yield the restrictions

p—m/2<y<p+7/2) .. [0<0?
{7,/1+7r/2<’y<d)—|—37r/2}lf{0A<0}' (2.56)

The condition (2.56|) defines ‘active’ portions of the dispersion curves A =0
in the Fourier representation (2.42)) of free waves. These active portions of
the dispersion curves in the Fourier plane («, ) depend on the angle v

determined in the physical plane (z,y) by (2.13a)).

2.10 Fourier representation of far-field waves
and generalized elementary waves

Alternatively, the Fourier representation (2.42)) can be modified as

oV(x) = Z ds a¢H(0A00)W(X,a,ﬁ)

A=0/A=0
where (a,f)€(A=0). (2.57a)
Moreover, o® and ¢? are defined by (2.53a]) and (2.55) as
o® = —sign(A; Ay) = sign[(f+ Fa)(1+ s%)/2 — Fa] (2.57b)
o’ = sign () = sign[cos(y— )] = sign(az+ Fy) . (2.57¢)
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The summation in (2.57al) is performed over all the dispersion curves defined
by the dispersion relation A = 0 and the point («, ) lies on a dispersion

curve, as in (2.42). The Heaviside unit-step function H(c®0?) in (2.57al)

takes the values

1 1
H(UAO'G):{O} if UAO'GZ{_l} . (2.57d)
The elementary wave function W(x, a, 8) can be expressed as
W(x,a,B) = a®e'(@T+8Y) = g2 10 (2.57e)
where the function a®(kz, kd) is defined as

cosh[k(z+ d)]
cosh(kd)

in accordance with (2.5) and (2.8).

The representation , where portions of the dispersion curves A = 0
are eliminated in accordance with , and the representation
restrict the dispersion curves in equivalent ways. The Fourier superposition
of elementary waves satisfies the Laplace equation , the far-
field boundary condition and the boundary conditions and
at the sea bottom and the free surface, and is consistent with the
potential for a flow that starts from rest. Expression therefore
provides a satisfactory analytical representation of the free waves created
by a body (ship, offshore structure) at some distance from the body, unlike

the representation (2.42)). In particular, the Fourier superposition (2.57a))
can be expected to yield correct far-field wave patterns.

z

a if d<oo or a*=e"* if d=o0 (2.57f)

Application to offshore structures in deep water

For purposes of illustration, the general Fourier superposition of
elementary free waves is now applied to diffraction-radiation of regular waves
by an offshore structure, i.e. for FF = 0, in deep water. The dispersion
relation for this particularly simple case yields a single dispersion

curve: the circle k = f2. Expressions (2.53b)) and (2.57c]) yield

H(c%0%) = H(c%) = H[cos(y— )] . (2.58)
One then has H(0c?20%) =0 for ¢+ 7/2 < 4 < 1 +37/2 in agreement with
(2.56). Figure shows the ‘active’ half ) — /2 < v < ¢ + 7/2 and the

‘inert’ half 1 + 7/2 < v < ¥ + 37/2 of the dispersion circle k/f? =1 that
correspond to ¢ = m/4.
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Figure 2.6: ‘Active’ (solid line) and ‘inert’ (dashed line) halves of the dis-
persion circle k = f2 that correspond to the ray angle ¢ = /4 for wave
diffraction-radiation by an offshore structure in deep water. The two points
of stationary phase at v = ¢ and v = ¢ 4+ 7 defined (in the next chapter)
by are also marked. The waves in the direction ¢ = 7/4 mostly stem
from the dominant wave generator at v = ¢ = m/4, located at the center of
the active half of the dispersion circle.

Expressions (2.57a]), (2.57etf) and (2.13alb) show that the free-wave po-

tential ¢" is given by

oV(f22, 2h, ) = ef2 oW(f2h, ) where (2.59)
Y+m/2 oy
V(PR ) =/ dry a®(y) el heos=¥) (2.59D)
Y—m/2

This expression provides an analytical representation of the free waves cre-
ated by an offshore structure in deep water. The amplitude function a?(v)

in (2.59b)), and in the general Fourier superposition (2.57a)), can only be de-
137

termined if the near-field boundary condition (| is considered, as was
already noted. This near-field boundary condition is ignored in the analysis
of free waves related to the ‘far-field boundary-value problem’ (2.3)).

Modified elementary free waves

The basic elementary wave function W (x, «, 8) in (2.42)) is modified as
W*(x,a,8) = H(o?0%) a*e'? where 0 = az+ By (2.60)

in (2.57a)) where (o, 3) € (A = 0) and 02, 0¥ and a* are given by c)
and (2.57f). Unlike the basic elementary wave function 7 the modified
wave function corresponds to a flow that starts from rest and satisfies
the far-field boundary condition .
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The origin (z = 0,y = 0) of the horizontal coordinates h = (z,y) in
(2.13a)) is arbitrary and can be chosen as (z = £,y = n). The phase function
0 in (2.13c)), (2.57¢) and (2.60f) then becomes

0=a(x=&)+By—n). (2.61)

A set of elementary wave functions , with 6 given by , associated
with a corresponding set of origins (§,,n,) taken as a set of near-field points
can be considered, and provides a basis for representing the free waves
generated by a ship or an offshore structure.

Thus, the free waves generated by a ship that advances (at a constant
speed along a straight path) through regular (time-harmonic) ambient waves
in water of uniform finite depth, can be expressed as a Fourier superposition
of the generalized elementary plane waves . This Fourier superposition
of elementary waves provides an analytical representation of the free waves
generated by a ship, at some distance away from the ship, that satisfies
the Laplace equation (2.3a)), the far-field condition and the boundary
conditions and ([2.3d]) at the sea bottom and the free surface, and is
consistent with a flow that starts from rest.

38



Chapter 3

Dispersion curves and
wave patterns

This chapter considers the Fourier superposition of modified elementary
waves, given in the previous chapter by , in the far field 1 < h where
h =+/z2+ y? is the horizontal distance from a ship or offshore structure.
This far-field analysis of the representation of free waves provides
relationships between the dispersion curves, defined in the Fourier plane
(a, B) by the dispersion relation, and the far-field waves generated by the
body (ship or offshore structure) in the physical space (z,y). In particular,
far-field wave patterns are determined in terms of the dispersion function
via simple explicit analytical relations. These relations, and much of the
analysis given in this chapter, hold not only for the waves created by a
ship or an offshore structure but more generally for a broad class of plane
dispersive waves.

3.1 Stationary phase and far-field waves

The general Fourier superposition (2.57) of elementary free waves is now
considered in the far field 1 < h =+/2?+ y2. The Fourier integral 1)

is expressed as

oV(x) = Z dsaellh® (3.1a)
ATo Ja=o0

where @ = a(s) and © = O(s) are functions of the arc length s along a
dispersion curve A = 0.
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Figure 3.1: Functions AS; (top) and ASs (bottom) defined by expressions
(3.3) for —1 < s — sy < 1. The function S2 has a point of stationary phase
at s = 5.

The functions @ and © are defined as
a=H(c%0%) a%a* and © =0/h = (ax + By)/h = kcos(y — ) (3.1b)

where 6 is the phase function defined by . The wavelength ds of the
oscillations of the trigonometric function e'”® in the wave integral
is determined by the relation h |©’(s)|ds = 27 where ©' = dO(s)/ds is the
derivative of the phase function © (s) at a point s of the dispersion curve

A = 0. One then has
27

557h\®’(3)| . (3.2)
This relation shows that the wavelength s varies along the dispersion curve
A = 0. Expression also shows that the local wavelength §s becomes
smaller, and hence the trigonometric function e'”®© oscillates more rapidly,
as h increases. The trigonometric function e'”® is then rapidly oscillatory
in the far field 1 < h, except at a point s = 5o where ©'(s) = 0, i.e. where
the phase © is stationary (does not change).

This property is illustrated in Fig[3.1] where the functions AS; and AS,
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defined as

S — 80

. . (S - 80)2
A=1+ , S1 =sin[h(s — s9)] , S2=sin h# (3.3)
are depicted for —1 < s — sg <1 and h = 150. The trigonometric functions
S1 and S5 respectively correspond to the phase functions

©1=5—s50 and Oy = (5 — 50)%/2
and the related derivatives
1=1and ©),=s—35p

in and (3.2). The amplitude function A varies slowly (linearly) within
the range 1/2 < A < 3/2 as s varies within the range —1 < s — 5o < 1.
The trigonometric function S; oscillates rapidly within the entire range
—1< s —sp < 1. The trigonometric function Ss is also rapidly oscillatory
within that range, except in the vicinity of the point s = sg, where ©5 = 0
and the phase ©2 of S5 is stationary.

Fig[3.1] suggests that the rapidly oscillatory function AS; only yields a
small contribution to the Fourier integral because the contributions
of the positive and negative values of AS; largely cancel out. Fig[3.]also
suggests that the main contribution of the function AS; to the integral
stems from the vicinity of the point of stationary phase s = sg,
and that the function AS5 yields a larger contribution than the function
AS; to the integral . A mathematical verification of these intuitive
expectations is given in section 3.3.

3.2 Dispersion curves and far-field waves

Expression (3.1b)) for the phase function © shows that a point of stationary
phase is defined by the equivalent relations

dO da g . de d®  da dg

E:ECOSd)"‘%SIHﬂ}—OOI‘ %: E:EJ:_FEy_ ,(34)
where ds = /(da)?+ (df3)? is the differential element of arc length along
a dispersion curve. The vector (da/ds,df/ds) is tangent to the dispersion
curve. It then follows from that, at a point («, 3) of a dispersion curve
where dO/ds = 0, i.e. at a point of stationary phase, the vector h = (z,y)
is normal to the dispersion curve and therefore is colinear with the vector
Vi A defined by . Thus, the stationary-phase relation shows that
the relations

E (m7y) _ V(AOMA,B) — Vva
ho Ve fareay VAl

where v = +£1 (3.5)
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Vp

Figure 3.2: A point («, 8) of a dispersion curve (in the Fourier plane) where
the stationary-phase condition d©®/ds = 0 is satisfied generates waves, in
the free-surface plane (z,y), in a direction h = (x,y) that is orthogonal
to the dispersion curve and is colinear with, and oriented as, the group
velocity vy . Thus, the group velocity vy = vyh/h is aligned with the ray
that originates at the origin h = 0 (the wavemaker) of the free-surface
plane (z,y) and is orthogonal to the dispersion curve A = 0 in the Fourier
plane («, 3). The phase velocity v, = v, k/k, aligned with the ray that
originates at the origin k = 0 of the Fourier plane («, 3), is orthogonal to
the constant-phase curves (e.g. wave crests and troughs) in the free-surface
plane (z,y).

hold at a point («, ) of a dispersion curve where d©/ds = 0.

This stationary-phase relation and expressions (2.57¢c|) and (2.29)) yield

o’ = sign(ax +By) = vsign(aA, +BAg) = vsign(Ay) .

This relation and expression (2.57b|) then yield
o020’ = —vsign(Ay) .

The function H(c?¢?) in (2.57a]) shows that a point of stationary phase
only contributes to the Fourier integral (2.57al) if 0 < 02 0¥, i.e. if

v = —sign(Ay) .
At such a stationary-phase point, expressions (3.5) then become

E: (x,y) =—sign(Af) (Aa’Aﬁ)

h /x2+y2 %A(ZN +A*2B .

The relations (3.6)) and (2.25a)) show that a point («a, 3) of a dispersion

curve (in the Fourier plane) where d©/ds = 0 mostly generates waves (in the
physical space) in a direction h = (z,y) that is orthogonal to the dispersion

(3.6)
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curve and is colinear with, and oriented as, the group velocity

x
v, = {Ui} _ ! {Aa} . (3.7)
Yg Ay |Ag
Conversely, far-field waves observed in a direction h of the physical space
predominantly stem from a point (or possibly several points) of a dispersion
curve (or several dispersion curves) where the dispersion curve is orthogonal
to h. This important result, illustrated in Fig[3.2], is in agreement with the

basic property that wave energy is transported along the direction of the
group velocity vg.

The contribution of a point of a dispersion curve where the phase O is
stationary, i.e. where d©/ds = 0, is then non-zero if sign(h-v,) = 1, but is
nil if sign(h-v,) = —1. Thus, one has H(c®¢%) = 1 as well as H(h-v,) = 1
at a stationary point («, ) of a dispersion curve that contributes to the
Fourier representation . The Heaviside step function H(c®¢?) in
this Fourier representation can indeed be expressed as H(h - v,) because
only points of stationary phase create far-field waves.

For instance, in the simplest case F'= 0 and 1 < d that corresponds to
diffraction-radiation of regular waves by an offshore structure in deep water,
the dispersion relation defines a single dispersion curve; specifically,
the circle k = f2. Expression for the phase function 6 becomes

0 = f2h cos(y — 1) .
The derivative df/dy = — f2h sin(y — v) vanishes for
y=1 and y=1¢ + 7. (3.8)

One then has two points of stationary phase along the dispersion circle
k = f2. These two stationary-phase points are marked in Fig for the
particular case 1 = w/4. Expressions (2.35) and (2.13arb) yield

h-vy, = hvg cos(y — ) .

Thus, the point of stationary phase v = 1 yields a non-zero contribution to
the Fourier integral (2.57a)) and creates far-field waves. However, the point
v =¥ + 7 yields a nil contribution and does not create waves.

Indeed, the point of stationary phase v = 1+ is the center of the ‘inert’
half ¢ + 7/2 < v < 1 + 37/2 of the dispersion circle k = f? determined
by the step function H(c?¢?) in , in accordance with (2.58) and
as is illustrated in Fig for v» = mw/4. The point of stationary phase
~ = 4 similarly is the center of the ‘active’ half ¢ — 7/2 < v < ¢ + 7/2
of the dispersion circle. Thus, the far-field waves created by an offshore
structure consist of a single system of waves associated with a single point
of stationary phase (a single wave generator) on a single dispersion curve.
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3.3 Far-field approximations
to a general wave integral

The wave potential ¢"(x) defined by (3.1)) is now considered in the far field
1 < h. Specifically, the basic wave integral

\I/WE/ ds a(s)eih@(s)_(s_s")z/22 where 1 < h (3.9)
— 0o

is analyzed. This analysis, given below, shows that the far-field behavior
of the function U"W defined by the integral is greatly influenced by
the phase function ©(s). Specifically, the value of the wave integral
for 1 < h is dominated by the existence of point(s) where the derivative
©’' = dO/ds of the phase function ©(s) vanishes, i.e. where the phase © is
stationary.

The influence of the phase function © on the far-field value of the wave
integral is analyzed by considering the behavior of the phase function
©(s) and of the amplitude function @(s) in the vicinity of any given (arbi-
trary) point s = sg. Indeed, the localizing function exp[—(s — s¢)%/¢?] is
introduced in to study the influence of the phase function ©(s) in the
vicinity of a point s = sq. Specifically, this localizing function is negligible
outside the approximate range so — 2/¢ < s < sg + 2/¢ of effective width 4 ¢
determined by the positive real number £.

Thus, the phase function ©(s) and the amplitude function a@(s) in the
wave integral (3.9)) are approximated via the Taylor series

© =00+ (s—50)O)+ (s —50)2 07 /2 +..., (3.10a)

a=7ao+ (s—s0)ap+ (s—s0)?ap/2+..., (3.10b)

where () and { mean that the first or second derivatives are evaluated at the

point s = sg, which is arbitrary as was already noted. The integral ((3.9)
then becomes

W= O (G Ul +ap Uy +ag 2+ .. (3.11a)
where \I/ZVE/dtt" et/ C+1R(6y1+6517/2+ ) (3.11b)

and the change of variable ¢ = s — sy was performed.

Contribution of a point where 0f # 0

The contribution of a range sg — 2/ < s < sg + 2£ that does not contain
a point of stationary phase is considered first. Thus, it is now assumed
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that ©( # 0 and that the point s = sg is not in the vicinity of a point of
stationary phase, i.e. is ‘far from a stationary point’. Expression (3.11b))
then yields

oW~ 2/ dt e~/ cos(h O t) = /€ e (O M/ and
0

o) : w
oW 21/ dtt e/ sin(hO) t) = _—,1 Oy _ i ﬁzf"@g e (@) /4
A o, on 2

The contributions of a point s = sy where ©f # 0 to the integrals ¥} in
the Taylor series (3.11a]) are then exponentially small in the limit h — oo.

Contribution of a point where O =0 and ©f # 0

The contribution of a range so — 24 < s < sg + 2/¢ that contains a point
of stationary phase is now considered. Specifically, it is now assumed that

6 =0 and ©f # 0. Expression (3.11b]) then yields
VJUES 2/dt e/ [cos(h©Ft?/2) +isin(hO(t?/2)] and
0

oo
W [ dtt e /CFIROTE2

— 00

The integral ¥} is convergent (even as £ — o) and is given by

oW~ 27 1—|—sign(®6’)i: 27 o sign(ey)in/a
h|6g] V2 h|6g]

in the limit / — oo. This asymptotic approximation and the expansion
(3.11a]) then yield Kelvin’s stationary-phase approximation [3,1]

W dg | 2T eilneotsign(©y) /4] (3.12)

h16g|

The stationary-phase approximation (3.12)) is not valid if ®f = 0. This case
is now considered.

Contribution of a point where ) =0 and ©7 =0

Specifically, the contribution of a range so —2¢ < s < sg + 2/ that contains
a stationary-phase point s = sy where ©(j = 0 and Of = 0 is considered. In
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the limit ¢ — oo, expression (3.11b]) then yields

61/32 [ _ T(1/3)/V3

(hgg/)1/3/()du COS(U3) = (h @6///6)1/3

6%/32i /°° ir(2/3)/v3
0

. 3\
7(h @6”)2/3 duu SIH(U ) - (h @6///6)2/3

Uy~ 2/dt cos(h O] t3/6) =
0

VALES Zi/dtt sin(h O t3/6) =
0

where I'(+) is the Gamma function. This asymptotic approximation and the
expansion (3.11a]) then yield Havelock’s stationary-phase approximation

T o6 170 [ 6 1V,
VW G (\//5,) {h@g'} eih®0 ~ 15467 G [h@g’] elh®0  (3.13)
The stationary-phase approximation (3.13)) is valid if ) = 0 and ©f = 0,
but ©F" # 0.

The asymptotic approximations (3.12)) and (3.13]) show that the function
TW defined by the wave integral (3.9) decays like 1/h'/2 as h — oo if @) = 0

and O} # 0, or decays like 1/h'/3 (less rapidly) if O = 0 = O} and O} # 0.

Other far-field approximations

The Kelvin and Havelock far-field stationary-phase approximations (3.12)
and (3.13) have been extended in a number of ways. Indeed, asymptotic
approximations of integrals are considered and applied in a vast literature.
[3,2]

3.4 Far-field approximation to free waves

Kelvin’s stationary-phase approximation ([3.12)) to the wave integral (3.9)),
applied to the general Fourier superposition (2.57)) of elementary free waves,

yields the far-field approximation

2 . 1 "
0" (x)~ ) H(o% o%)af \/|97\ a; ! O SIERON AL (3 14a)
J

=0

where the relation 6 = h© was used. The phase function 6; and its deriva-
tives 6] and 6’ are given by

O =ajz+ By, O =c;x+ By, 0 =ajz+p]y (3.14b)
where (o, ) =d(a,8)/ds , (", ") =d*(«a,)/ds* (3.14c)

and ds = +/(da)?+ (dB)? is the differential element of arc length of a dis-
persion curve. The summation in (3.14a)) is performed over all the points

46



(e, B;) that satisfy the stationary-phase condition HJ’» = 0 for every disper-
sion curve defined by the dispersion relation A = 0.

Every component of the superposition of far-field waves defined by the
analytical approximation (3.14al) decays as 1/v/h as h — oo, i.e. one has

27T . 3 " 1
¢‘> z 1[91+§1gn(9.)w/4] ( ) h— 2 2
a a; e J =0|— as = X +y — 0 .
7\167] Vh

The waves created by an offshore structure or by a ship that advances in
calm water or through regular waves therefore decay as 1/ Vh as h — oo,
in accordance with basic considerations related to the energy transported
by elementary waves. The far-field stationary-phase approximation
becomes more accurate as h increases, and evidently is not valid as h — 0
or for small values of h, i.e. in the near field.

The amplitude of every wave component is given by
V2 a?/ |07| where a;’ = a%(ay, )

is the value of the amplitude function at a point (a;, 3;) of the dispersion
curve that satisfies the stationary-phase condition 6] = 6'(a;, 8;) = 0.

The amplitude function a? can only be determined from the near-field
hull-surface boundary condition, which is ignored in the far-field boundary-
value problem considered in this chapter. However, further information
about far-field free waves—notably wave patterns—created by ships and
offshore structures can be gained from the far-field approximation ,
i.e. without solving the near-field boundary-value problem that includes
the boundary condition at the ship-hull surface. This additional analysis of
far-field waves is considered further on.

The asymptotic (stationary-phase) approximation shows that the
far-field waves due to diffration-radiation of regular waves by an offshore
structure, and the far-field waves created by a ship that steadily advances
in calm water or through regular waves, mostly consist of a finite (indeed
small) number of dominant waves. These waves are associated with points
of the dispersion curves, defined by the dispersion relation, where the phase
0 is stationary, i.e. where #’ = 0 as already noted.

For instance, for diffraction-radiation of regular waves by a floating body
without forward speed, i.e. in the particular case F' = 0, the dispersion rela-
tion defines a single dispersion curve and only one point of stationary
phase that satisfies the condition 0 < o2 ¢? exists for any ray angle ),
in accordance with (2.58) and . Thus, only one wave exists at any

far-field point (x,y) = h(cos®,sine) in this (particularly simple) case.

For a ship that steadily advances along a straight path in deep water,
i.e. in the particular case f = 0 and d = oo, the dispersion relation (2.7
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becomes F2a? = k. This dispersion relation defines two dispersion curves,
which are symmetric about both the axis o = 0 and the axis 8 = 0. It is
shown in the next chapter that, in this case, one has either no (i.e. zero)
point of stationary phase, or two points of stationary phase where 0 < o®¢a?,
depending on the location of the point (z,y) = h(cost,siny) with respect
to the path of the ship.

Thus, the free surface around a ship that steadily advances in calm water
can be divided into a region (notably ahead of the ship) where there are no
waves, and a wake behind the ship where two waves (called ‘transverse’ and
‘divergent’ waves) are found at every point. This commonly-observed and
well-known feature of the flow around a ship that steadily advances in calm
water of large depth is demonstrated in the next chapter.

Alternative representations of dispersion curves

Expressions presume that the dispersion curves are defined in terms
of parametric representations in which the arc length s is taken as the
parameter. Alternative parametric representations of the dispersion curves
can evidently be used. Both the elementary wave function

a’;— ei[9j+sign(9;’)n/4]

and the potential function ¢"(x) in are independent of the para-
metric representation chosen to define the dispersion curves A = 0. The
stationary-phase approximation is then independent of the mathe-
matical representation of the dispersion curves.

Indeed, the amplitude functions a®(s) and a?(s) associated with alter-
native parametric representations k(s) and k(s) of a dispersion curve are
related as

a®(s) = (ds/ds) a®(s) .

The derivatives of the phase functions 6(s) and 8(s) are similarly related as
0'(s) = (ds/ds) 0'(s) and 0"(s) = (ds/ds)*6"(s) .
One then has
a®(s) /V/|d20(s)/ds? | = sign(ds/ds) a®(s) /v/|d*0(s) /ds?| .

However, the integration limits in the integral (3.9) must be interchanged
if ds/ds < 0.

Application to offshore structures in deep water

For purposes of illustration, Kelvin’s far-field approximation (3.12)) is now
applied to the wave integral ¢"V(f2h, ) defined by (2.59b) in the Fourier

48



representation (2.59)) of regular waves created by an offshore structure in
deep water. The phase function # and its derivatives 6’ and 6" with respect
to v are given by

0= f*heos(y =), 0/ = —f*hsin(y —¢) , 8" = —f*hcos(y —¢) .
The integration range ) — /2 < v < +7/2 in (2.59b)) contains the single

point of stationary phase v = 1, where sign(#”) = —1 and |0”| = f?h. The
stationary-phase approximation (3.12)) then yields

2T i(F2h—m
W(f2h, ) ~ ”jTh aﬁ:w el (fh=m/4) (3.15a)

where a?_ , means that the function a®(y) is evaluated at v = 1. Expres-
sions ‘, and (3.15a] m yield

~ 27 2, i(f2h—ft—mn

P(x,t) =~ 2h ef Rea _y€ (FFh=ft=m/4) (3.15b)

The flow potential (3.15b)) is associated with concentric circular waves with
frequency f, wavenumber k = f2, wavelength A\ = 27/f2, and amplitude

that decays as 1 /\/E = 1/4/x? 4+ y? as the waves propagate outward away
from a wave generator (floating body) centered at h = 0.

3.5 Wave patterns

Additional information about important features of far-field waves created
by ships and offshore structures can be obtained from the dispersion function
A(f,a,B;F,d) and the related dispersion curves A = 0. In particular, the
wave patterns formed by far-field waves are now considered.

The relations and ( m 2.13Db)) yield

{z}Sign(Af)HvkhAH{i;} : (3.16)

This relation and expression ([2.29) show that the phase § = ax + Sy of the
trigonometric function in (2.57¢)) and (2.60|) is given by

hk

0=ax+py=—sign(Ay) = AN Ay

This relation yields
h 10
VAl k[Ag|
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The relation (3.16) can then be expressed as

{Zj} = sign(Ay) ||9A|£’|“ {i;} . (3.17)

The relation , where the point («, ) moves along a dispersion curve
A =0, yields parametric equations that determine the coordinates x and y
associated with any given value of the phase 6, e.g. a particular wave crest
or trough.

If the dispersion relation A = 0 defines several dispersion curves, differ-
ent wave patterns are obtained as the point («, ) in moves along
every dispersion curve, as is illustrated in chapter 5 for a ship that steadily
advances through regular waves. Specifically, the dispersion relation
for deep water defines three dispersion curves if 0 < 7 < 1/4 or two disper-
sion curves if 1/4 < 7, and a ship that steadily advances through regular
waves consequently creates three or two families of waves and corresponding
distinct wave patterns in these two flow regimes.

Successive waves, e.g. a series of wave crests, are obtained if a series of
phase values |0,,| = 2n7 with n = 1,2, 3, ... is considered in . Thus,
far-field wave patterns can be determined from the dispersion function A
via the parametric equations

A A
h, = {;Z} = LZZ {iz} = LZZ Vi A (3.18)
where o is given by . This relation yields
hp = |h,| = \/m: 2n7];|||AV:A|| =nA |VAkkA|” (3.19a)
where A = 27 /k is the wavelength. Expressions and yield
hplcos(y —0)| =nA (3.19b)

where v and § are the angles associated with the phase velocity v, or the
group velocity vy in (2.16]) and (2.25d).

Wave patterns and group velocity

Expressions (3.18)-(3.19a)) and (2.52) yield
h, . Vk A
= _Slgn(Af)HVi:TH (3.20)

in agreement with (3.6)). This relation and expression (2.25c|) relate the
group velocity v, and the wave pattern as

hy _ (@niyn) _050)) _ v (3.21)
ha — /22 +y2 vg vy '
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This relation shows that a wave observed at a far-field point h,, = (2., yn)
stems from the energy that is transmitted, at the group velocity v, along
straight lines drawn from the origin hg = (z¢,y0) = (0,0) of the wave
pattern, as is illustrated in Fig[3:2] The origin hy of the wave pattern
approximates a near-field wavemaker, e.g. a ship or an offshore structure,
which appears as a point to a far-field observer at a large distance from the
near-field wavemaker.

The factor o2, given by (2.52)), in the parametric equations ([3.18) that
determine far-field wave patterns is related to the generalized elementary

waves considered in sections 2.8 and 2.9. This factor is crucial. For instance,
it explains why a ship that steadily advances in calm water only creates
waves behind the ship. Indeed, if the basic elementary waves given in section
2.2 are used instead of the generalized elementary waves given in sections
2.8 and 2.9, the resulting parametric equations that determine far-field wave
patterns do not involve the factor ¢® and cannot predict whether steady
ship waves exist behind the ship or ahead.

Wave patterns and phase velocity

The phase function

O =az,+ Byn
in expressions for the stationary-phase approximation of far-field
waves is constant along a wave-crest line. It follows that

dO,/ds = (xpda/ds +yndB/ds) + (adx,/ds + Sdyn/ds) =0 .
This relation and the stationary-phase relation
db,/ds = x,da/ds+ y,dS/ds =0

yield adx,, + fdy, = 0. This relation shows that the differential element
(dxn,dy,) of a far-field wave-crest line is orthogonal to the wave vector
k = (a, ) and consequently to the phase velocity v, = v, k/k given by
(2.16). The phase velocity v, is then orthogonal to the constant-phase
curves (e.g. wave crests and troughs) defined by , as is illustrated in

Fig[3.2]

Diffraction-radiation of regular waves by offshore structures

In the particularly simple case of diffraction-radiation of regular waves by
an offshore structure in finite water-depth, the parametric equations (3.18}),
the dispersion relation (2.10) and expressions (2.31a)) and (2.53b) yield

o [xn )| _ 2nm [cosy
f {yn}_k’*/ﬂ{sinv} where —m <y <m
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and k. /f? = k¥ is the root of the dispersion relation (2.38). These para-
metric equations define a series of concentric circles with radii

h¥ = HY w?/g = 2n7/k¥ = 2nmtanh(d“k®) < 2nw. (3.22)

n

Furthermore, the phase velocity v, and the group velocity v, are colinear,
and one has ¢ = v in accordance with (2.35)), (2.25d)) and (2.31a]).

3.6 Cusps and asymptotes of wave patterns

Inflection point of a dispersion curve

The unit vector
Vi A (Aq,Ap)

VAl — /A2 + A2

is normal to a dispersion curve A(f, «, 8; F,d) = 0. Thus, the unit vector

(Ag,—Da) /A% + A

is tangent to a dispersion curve, and the derivative d/ds in a direction
tangent to a dispersion curve is given by

1 { Ag }.{3(1} _Dp0a —Na 85 (3.23)

\/m —Aof 10s Vi Al

An inflection point of a dispersion curve is a point where the angle §
between the vector Vg A = (A, , Ag) normal to the dispersion curve and
the a axis reaches a local maximum or minimum. Thus, inflection points
are determined by the condition

d(tand)/ds = d(Ap/Ay)/ds =0

This relation and (3.23)) yield
Ag 00 (Ag/AL) —Ab 0g(Ap/Ay) =0

This condition can be verified to yield
AYAaa =200 AgAas+ A% Agg=0. (3.24a)

Equation (3.24a)) determines the inflection point(s) of a dispersion curve
defined by an implicit equation A(f,a, 3; F,d) = 0.

An inflection point of a dispersion curve defined by the parametric equa-
tions o« = A(t) and 8 = B(t) is determined by the equation

A'B" — B'A" =0 (3.24b)
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Vp

Figure 3.3: An inflection point, marked I in the figure, of a dispersion
curve A = 0 in the Fourier plane («, ) yields a cusp, marked C, of the
corresponding wave pattern in the free-surface plane (z,y).

where the superscript * means differentiation with respect to the parameter
t. For a dispersion curve defined by the polar equation k = ko (), equation
(13.24b)) yields

k2 +2(k))? — Kokl =0 (3.24c)

where the superscript * means differentiation with respect to the polar angle
~. Finally, for a dispersion curve defined by the explicit equations 5 = B(«)

or a = A(B), (3.24b)) becomes
d*B/da* =0 or d*A/dB* =0, (3.24d)

respectively. The alternative equations (3.24]) can be used to determine the
inflection point(s) of a dispersion curve, depending on the mathematical
representation of the dispersion curve.

Cusp line of a wave pattern

A dispersion curve that has an inflection point (af, 3%) is now considered.
As the point (a, ) moves along the dispersion curve in the vicinity of the
inflection point (af, %), the angle § between the vector Vix A normal to
the dispersion curve and the a axis reaches a local maximum or minimum,
denoted as 6%, at the inflection point. Accordingly, the corresponding angle
1 in the free-surface plane also reaches a local maximum or minimum ?,
given by ? = 6% or ¢? = 6° + 7, and the far-field wave pattern has a cusp

at the angle 1?, as is illustrated in Fig
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Asymptote line of a wave pattern

The relations (3.19a)) and (2.22) yield
2 2
e _ WAL VAFAE
2nm k|Ag| T |aAg+BAg| T klcos(y—4)|
One then has

hpn=vVa2 +y2 -0 if KAL,=0 (3.25)

or v — 6 = +xm/2 with £ < co. Thus, a point (k,7) of a dispersion curve
where k A, vanishes yields an asymptote of the far-field wave pattern, at an
angle 1 that is orthogonal to the angle v at the point where k Ay vanishes.
The wave patterns depicted in Fig[5.12], Fig[5.15] and Fig[5.16], created by a
ship that advances at a constant speed V; through regular waves of frequency
w in the regime 1/4 < 7 = V,w/g are examples of patterns that include
asymptote lines.

3.7 Size and shape of wave generator,
and wave interferences

The analytical representation (3.18)) of wave patterns is associated with the
stationary-phase approximatio. This approximation is based on an
asymptotic (far-field) analysis that only involves the phase 6. Specifically,
this stationary-phase analysis does not involve the amplitude function a? in
(3.14). However, the wave-amplitude function a?, related to the size and
the shape of the wave generator (ship or offshore structure), can have a
significant influence on the actual appearance of the far-field waves, as is
well known from common observations of the waves created by various types
of ships (slow or fast monohull or multihull ships, fully-submerged bodies)
and is illustrated in Fig[3.4] for diffraction-radiation of regular waves by an
offshore structure.

Indeed, the far-field stationary-phase approximation and the re-
lated representation of wave patterns consider the far-field waves
created by a near-field wave generator that is located at a point, taken as
the origin h = (x,y) = (0,0). The assumption that far-field waves originate
from a point located at the centroid of a ship hull (or offshore structure)
is reasonable because a ship appears as a point from far away, i.e. in the
far field. However, an important limitation of this 1-point wavemaker flow
model is that the relations and evidently cannot account for
the influence of the size and the shape of the ship or structure.

In particular, a monohull ship that advances along a straight path in
calm water is a slender body that creates two dominant waves at the bow
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Figure 3.4: Contour plots of the real part of the potential function "W
defined by where the amplitude function a? is taken as a® = sin~y on
the left side or as a® = cos(3+) on the right side, within the annular region
5 < w?V/X2+4+Y2/g < 25. These wave patterns illustrate the influence of
the wave-amplitude function a?, and of wave interferences, in the particular
case of diffraction-radiation of regular waves by an offshore structure.

and the stern of the ship, where the hull geometry varies abruptly, and is
then more realistically modeled as a 2-point wavemaker than as a 1-point
wavemaker, which is a highly simplified flow model that does not involve the
length of the ship or the related Froude number F'. Interferences between
the two dominant waves created by the bow and the stern of a ship have
important consequences that cannot be explained via the representation
of wave patterns based on the stationary-phase approximation
for a 1-point wavemaker model.

Specifically, interferences between the transverse waves created (predom-
inantly) by the bow and the stern of a ship result in oscillations (humps and
hollows) in the wave drag of the ship at low Froude numbers (for F' smaller
than about 0.4) where transverse waves are important. Similarly, construc-
tive interferences between the divergent waves, dominant at high Froude
numbers (for F' greater than about 0.6), created by the bow and the stern
of a ship result in highest waves along rays that are located inside the cusps
of the Kelvin wake and the appearance of a ‘narrow ship wake’. [3,3]

The assumption that far-field waves created by a near-field wavemaker
(a ship hull or an offshore structure) are generated at a single point located
at the centroid of the wavemaker is then restrictive, notably for floating
bodies that consist of several major elements, e.g. the four legs of a typical
offshore structure or the three hulls of a trimaran. Indeed, the 1-point
wavemaker model is restrictive even for a monohull ship, as is illustrated
by the high-speed ship wakes narrower than the Kelvin wake noted in the
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previous paragraph.

Useful additional information about far-field waves can be gained by
considering the superposition of far-field waves created by major elements
of a near-field wave generator, e.g. the legs of an offshore structure in regular
waves, and the bow and the stern of a monohull ship or the three hulls of a
trimaran that steadily advances in calm water.

The relations (3.14)) and (3.18)) can readily be applied to a wave generator
located at a point (x,y) = (T, ym) by replacing (z,y) by (2 — T,y —Ym) -
Thus, the horizontal distance h, the polar angle i) and the phase angle 6

defined by (2.13aftc) become

h = V(@ = 2m)2+ (y —ym)? , tandm = (Y = ym) /(@ — 21m)
and O, =a(@—zm)+ LY —ym) -

For instance, for wave diffraction-radiation by an offshore structure that
consists of M main elements, e.g. M cylindrical legs, the far-field approxi-

mation (3.15a)) yields

m=M

14 ~ ] i(fzhm_ﬂ'/4) 2
- = a e VIihm 3.26
V2w 1 Y=%m IVF ( )

., denotes the value of the amplitude function a®(y) at vy = Yo, .

m=

where af

An important feature of the superposition of far-field waves created at
several points (2,,,y) is wave interferences. These interference effects
are illustrated in Fig for regular waves created by identical (in-phase)
heaving motions of three or four identical vertical circular cylinders, i.e. for
M =3o0or M =4in where the function a? is taken as a® = 1. The
heaving vertical cylinders are centered at the points

T2, Ym) = p(COS fim,Sin ) where pi,, =27 (m —1)/M  (3.27)
and p= f2\/22 +y2, =7 or p=27.

Fig[3.5] shows that wave interferences, associated with the size and the
shape of a wavemaker (ship or offshore structure) and the related ‘amplitude
function’ in the Fourier representation of far-field waves, can have a striking
influence on the actual appearance of far-field wave patterns, which can
then greatly differ from the wave patterns predicted via a stationary-phase
analysis for a 1-point wavemaker. [3,4]

Nevertheless, the wave patterns predicted via a ‘phase-only’ analysis, in
which the influence of the amplitude function related to the size and the
shape of the wavemaker is ignored, provides important information about
the far-field waves that correspond to a given dispersion function. These
basic wave patterns are considered in chapters 4 and 5 for a ship that steadily
advances in calm water or through regular waves.
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Figure 3.5: Contour plots of the real part of the potential function "

defined by (3.26) with a® = 1, M = 3 (left side) or M = 4 (right) and

p=w?\/X2 +Y2/g=mr (top half) or p = 27 (bottom) within the annular
region 10 < w?v/X2+Y?2/g < 35. These wave patterns illustrate the effect
of interferences in the particular case of radiation of regular waves by an
offshore structure.
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Chapter 4

Free ship waves in
calm deep water

The analysis of free waves considered in the two previous chapters largely
holds for a broad class of dispersive plane waves associated with a general
dispersion relation. The results of this general analysis are applied in this
chapter to the free waves created by a ship that advances at a constant
speed in calm water of large depth and lateral extent.

4.1 Dispersion relation and dispersion curves

In the special case f = 0 and d = oo considered in this chapter, the disper-
sion function A defined by (2.7) or (2.9) becomes

A(a,B;F) = F?a® —k where k= +/a2+2. (4.1)

The corresponding dispersion relation A (a, 5;F) = 0 can be expressed as

@)=k =\/(a")2+ (BY)2 where (4.2)
(k¥,a", BY) = F2(k,a, B) = (K, K" KY)V?/g (4.3)
denote speed-scaled wavenumbers, in accordance with .
The dispersion relation and expressions yield
(Y, oV, 8Y) = (1, cos7,siny)/cos®>y where —7 <~ <.
One then has two dispersion curves, depicted in Fig[d.I], that correspond
to —m/2 < v < w/2 and 7/2 < 7 < 37/2. These dispersion curves are
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Figure 4.1: Dispersion curves associated with ship waves in calm deep water.

symmetric with respect to the axis o = 0 and are also symmetric about
the axis ¥ = 0, and can be represented as

(K, £aVv,8Y) = (1, cos7,siny)/cos’>y where — /2 <y <nw/2 (4.4a)

or in the alternative forms

iaV:\/1/2+ 1/4+ (BY)? where — oo < Y < o0, (4.4Db)
(kv,:lzav,ﬂv) = (1—|—q2,\/1+q2,q 1—|—q2> where —oo < ¢ <o00.
(4.4c)

The polar equations (4.4a)) determine the speed-scaled wavelength A" as
A gN 27

)\VEFEWZWZQWCOSQ’YSQTFE)\XLMC . (4.5a)
The parametric representation (4.4c)) similarly yields
2 2
'=1+¢*>1 and AV:]TC:?ZQS%EAK,W (4.5b)

The parametric representation (4.5b|) yields
AV =1,0.5,0.2,0.1,0.02 for ¢ =0,1,2,3,7.

max

Expressions (4.5) show that a ship advancing in calm deep water at a
speed V; creates waves with wavelengths

A <A™ =27V2/g .
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The longest waves created by the ship, along its track as is shown further
on, are shorter than the ship length Ls at ‘low’ Froude numbers

F=V,/\/gLs <1/V2m~04
but are longer than the ship length at ‘high’ Froude numbers 0.4 < F'; i.e.
A" < Ly if F <04 and Ly <A™ if 04 < F.

The Froude number F' = 0.4 is then significant for practical applications,
notably for ship design.

The Cartesian representation (4.4b)) yields

oV~ 14 (8)%/2 a5 8Y = 0 and [a¥] ~1/|8V] as B = %00
The parametric representation yields
BV~ qg+d%2 < ||~ 1462 ~ B =1+¢" as ¢ =0,
la"|~q < |8V~ @~k as ¢ — +o0.

The representation (4.4c) is convenient to evaluate the Fourier integral
that determines the waves contained in the Green function and the related
Fourier integrals associated with a distribution of singularities.

4.2 Elementary free ship waves

The dispersion relation (4.2) shows that the waves created by a ship that
advances at a constant speed in calm deep water consist of a superposition
of elementary free waves

R0 here kY = 1/cos®y and 6 = kV(zVcosy + yVsiny) . (4.6)
Moreover, 2V, 4", 2V denote the speed-scaled coordinates
(V4" 2") = (2,y,2)[F? = (XY, Z) g/ V? (4.7)
as in . The phase function 6 in is then given by
0 = (x¥cosy + yVsiny)/cos®y = (2" cosy + yVsiny)(1+ tan?y) . (4.8)

In the far field Y = \/(z"V)2 + (yV)2 — oo, dominant contributions to a
superposition of the elementary waves stem from values of v for which
the phase function 6 given by is stationary, i.e. from the roots of the
‘stationary-phase equation’ df/d~y = 0. This equation yields

na Y  tany
—zV 7 —X 14 2tan?y

tany* = (4.9)

where the ray angle ¢)* is measured from the negative z axis (z < 0,y =0),
i.e. from the track of the ship, which corresponds to ¥y = w and ¥* = 0.
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4.3 Kelvin’s wave pattern

The far-field wave pattern due to a ship that steadily advances in calm deep
water, known as Kelvin’s wave pattern or Kelvin’s wake, is now considered.

Analytical representation of Kelvin’s ship wake

The far-field wave pattern associated with a dispersion function A is de-
termined from A by the general parametric equations , where o2 is
given by in the special case of steady ship waves now considered.
The pattern of far-field waves created by a ship that steadily advances in
calm deep water is then defined by the parametric equations

T B . 2nmw Aa
h, = {yn} = —sign(a) FAL {Ag} (4.10)

where n =1,2,3,... and A is the dispersion function (4.1]). The derivatives
Ay, Ag and Ay of A in () are given by (2.31b)), with t? =1 in deep

water. One then has

Ay =2Fk —1)a/k=(2-1/k")a" = (1 +sin?y)/cos , (4.11a)
Ap=—-BYE = —siny, Ay =2k"cos>y—1=1 (4.11Db)

where expressions (4.2)), (4.3) and (4.4a)) were used.
Expressions , (4.10) and (4.11)) yield

4 1+ sin?y .
v (=2nme [cosy| with —7m <~y <. (4.12)
yy sin-y cos~y

The parametric equations define the pattern of free waves created by a
ship that advances at a constant speed in calm deep water. Equations
show that the dispersion curves located in the half planes —7/2 < v < 7/2
and 7/2 < v < 37/2 yield identical waves patterns, and that these wave
patterns are symmetric about the horizontal axis y¥ = 0, i.e. the track of
the ship.

The Kelvin wave pattern defined by (4.12]) can then be represented as

—aV 1+ sin?y
v o(=2nTq ~pcosy where —m/2<y<7/2. (4.13a)
Y sinvy cos~y

These expressions yield
hY =/(xV)2+ (y¥)2 = 2nm\/1+ 3sin?y cosy (4.13b)
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Figure 4.2: Kelvin’s pattern of transverse and divergent waves created by a
ship that advances at a constant speed in calm deep water.

where —7/2 <~ < /2. Expressions (4.7, (4.10) and (4.11) also yield the

representation
-X, 2 2 -1/EV)VEY
52{ ; } % {(i 1/_1)/kv } where 1 < kY. (4.14)

The Kelvin wave pattern defined by the alternative parametric equations

(4.13a]) or (4.14) is depicted in Fig forn=1,2,...,5.

The Kelvin wave pattern (4.12)) only depends on the speed-scaled co-
ordinates ¥ and y" defined by (4.7). Thus, Kelvin’s ship wave pattern
is independent of the length L, of the ship, and only depends on the ship
speed V; and the acceleration of gravity g.

Expressions yield z,, < 0, which shows that a ship that steadily
advances in calm deep water only creates waves in the region x < 0 behind
the ship [4,1]. These expressions also show that Kelvin’s wave pattern is
symmetric about the axis y = 0, i.e. the track of the ship, as is expected for
a ship that is modeled as a one-point wavemaker.

Expressions (4.12)) yield

yY Yn _ Yo _  tany
—z¥Y T -z,  —X, 14 2tan?y

tany* =

(4.15a)

in agreement with the stationary-phase relation . As was already noted,
the angle ¥* in is measured from the negative z axis (z < 0,y = 0),
i.e. from the ship track, which corresponds to ¢ = 7 and ¢* = 0. Expression
determines the ray angle ¢* of a dominant wave in terms of its
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propagation angle . Expression (4.15a)) yields
2 tanyp* tan?y — tanvy + tany* = 0 . (4.15b)

Equation (4.15bf) is a quadratic equation that determines tan+y in terms of
tany*, and therefore determines the wave-propagation angle v in terms of
the ray angle ¢*.

The Kelvin wake angle %

The quadratic equation (4.15b)) has two distinct real roots if tan®y* < 1/8,
ie. if

1%
—pF < * < & where * = arctan (_y"V> and (4.16a)
Y& = arctan(1/v8) = arcsin(1/3) ~ 19°28’ (4.16b)

is the Kelvin wake angle. If ¢ < |¢)*|, the quadratic equation (4.15b) has
(4162

no real root, and waves do not exist outside the Kelvin wedge (4.16a)) that
trails a ship.

The Kelvin angle (4.16b)) and the wave pattern (4.13a)) are indepen-

dent of the Froude number, and are then identical for every ship, including
fully-submerged bodies (e.g., a submarine at a low submergence depth), dis-
placement ships (built in a wide range of lengths and speeds), hovercrafts
and surface-effect-ships, fast ships and planing boats. This classical theo-
retical result is based on a far-field stationary-phase analysis in which a ship
is modeled as a 1-point wavemaker, as is explained in section 3.7.

If tan?tp* = 1/8, i.e. if * = £ 9K the quadratic equation (4.15b)) has a
double real root, given by

tany” = +1/v2 ie. 7%~ +35°16' (4.17)

that corresponds to the cusps of the Kelvin wake. Thus, Kelvin’s pattern of
free waves behind a ship that steadily advances in calm deep water has two
cusps along the ray angles * ~ £19°28', as can be observed in Figlt.2].

These cusps correspond to inflection points of the dispersion curves, as
is shown in section 3.6. Specifically, the inflection-point condition ((3.24c|)
for a dispersion curve defined via a polar representation yields

(k)2 4 2(dkY/dv)? — kVd*kV/d~? = 0 where kY =1/cos® v (4.18)

and kY is the speed-scaled wavenumber defined by (4.3). Equation (4.18))
has real roots given by tany = 4+1/v/2, in agreement with 1) The
corresponding cusp angles are determined by (4.15al) as

tan~y +1

t * = =
any 14 2tan?y  24/2
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Figure 4.3: Wave-propagation angles 77 and 7" and related wave-crest
angles ! and ¢ of the dominant transverse and divergent waves found at
a ray angle ¢* within Kelvin’s pattern of ship waves in calm deep water.

in agreement with (4.16b|).

If the parametric representation (4.4c|) of the dispersion curves is used,
instead of the polar representation (4.4al), inflection points of the dispersion
curves are determined by the inflection-point equation (3.24b)), which yields

2¢* +¢*-1=0.

This equation has two real roots

“=+1/2~+0.7. (4.19)

Transverse and divergent waves
The two real roots of the quadratic equation (4.15bf) are given by

14 +/1— 8tan?¢* (4.208)

4 tany*

2 tany*
1+4++/1— 8tan?y*

The two roots mean that at any point along a ray at an angle 9*
inside the Kelvin wedge , one has two dominant waves, which are
known as transverse and divergent waves. These waves propagate at angles
v =~T and v = 4P, as is shown in Fig. The corresponding angles of
the wave pattern (e.g. crest-lines) are given by

and tany” =

tan’yT =

! = (signy?) 90° — 4T and ¢ = (signy?)90° —~P . (4.20b)

The wavelength AV = 27/kY = 27 cos?y = 27/(1+ tan?y) is given by
Y Jm= (1 + 4 tan?ep* +\/m) cos®y* and (4.20c)
AV, /1 = 16 tan®y*/ (1+4tan2w*+m> (4.20d)

for the transverse and divergent waves. Expressions (4.20) determine main
features—wave-propagation angles, wave-crest angles, wavelengths—of the
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Figure 4.4: Variations of the wave-propagation angles vZ and v (top left
corner), the wave-crest angles p? and p” (top right), the wavelengths \Y.
and A}, (bottom left) and the speed-scaled group velocities V,/V; and V,P/V;
(bottom right) related to the dominant transverse and divergent waves
found at ray angles 0 < ¥* < ¥ within Kelvin’s pattern of ship waves
in deep calm water.

transverse and divergent waves found at a ray angle ¥* within the Kelvin
wake. The wave-propagation angles v7 and y”, the wave-crest angles ¢’
and ¢P, and the wavelengths A\Y. and A}, given by are depicted in
Fig for ray angles ¥* within the positive half of the Kelvin wake (4.16)).

Only the ranges 0 < ¥* < P and 0 < ~v < 7/2 associated with the
positive half 0 < y" of the Kelvin wave pattern is now considered due to
symmetry about ¢* = 0,y = 0,y" = 0. Expressions (4.20)) and Fig show
that the wave-propagation angles v7" and P, the wave-crest angles ¢’ and
©P, the wavenumbers kY. and kY and the corresponding wavelengths AV
and A}, of the transverse and divergent waves in Kelvin’s ship wake vary
within the ranges

0 < tan®yT < 1/2 < tan®yP ie. 0 <47 <3516/ <P <90°,  (4.21a)
0 < tan®pP < 2 < tan?p?  ie. 0 < P <54°44'< T <90°,  (4.21b)
1<ky<3/2<k¥ and 0 <A} <4m/3x~42< )\ <27rx6.3. (4.21c)

Expressions (4.21]) and (4.15a)) show that the longest ship waves are found
along the ship track 1* = 0 and correspond to v7' = 0, 7' = 90° and kY. = 1.
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At the cusps of the Kelvin wake, expressions (4.21)) yield
V=P =7"%35°16", o' =" ="~ 54°44', (4.22a)
kY = kY =k% =3/2 and Ay =\, =\l =47/3. (4.22b)

Thus, the wavelength of the waves (transverse and divergent) at the cusps
of the Kelvin wake are equal to 2/3 of the wavelength of the longest (trans-
verse) waves at the track of the ship.

Expressions (4.20atb) yield the asymptotic approximations
AP~ 90°— 24h, and P ~ 24)s as 1o — 0 (4.23a)

where 1, = 180¢*/7 is expressed in degrees. These approximations show
that the divergent waves near the track ¢* = 0 propagate in a direction
that is nearly orthogonal to the ship track.

Expressions (4.21c) also show that the divergent waves contain short
waves. In particular, the wavelength A}, of the divergent waves vanishes at
the ship track ¥* = 0. Specifically, expression (4.20d)) yields

Ny = gAP/VE ~ 87 ()% = w242 /4050 ~ (1o /11.4)? as o — 0 .
(4.23b)

Expressions (4.23b)) and (4.22b)) yield
M AG = AP/AC < 0.1 if 9, < 7.4°. (4.23c)

The relation shows that the divergent waves created by a ship that
steadily advances in calm deep water are significantly shorter than the waves
found along the cusps of Kelvin’s ship wake within an inner wedge with angle
approximately equal to 15°. This inner wake, where divergent are short, is
a significant portion of the 39° angle of the Kelvin wake where waves exist.

The approximations mean that short divergent waves in the
vicinity of the track of a ship can be influenced by surface tension, which is
significant for wavelengths A smaller than about 7cm. Much shorter wave-
lengths near the ship track could also be influenced by viscosity. However,
a more stringent restriction stems from nonlinear effects and wavebreaking.

Specifically, although the amplitude A of the divergent waves created
by a ship vanishes at the ship track, the steepness A/A is unbounded at
1¥* = 0 because the wavelength A vanishes at a faster rate than the wave
amplitude A as ¥* — 0. Divergent waves therefore cannot exist within an
inner portion of the Kelvin wake that borders the track of a ship. Indeed,
the inner region where short divergent waves are too steep to exist in reality
is a significant portion of Kelvin’s ship wake [4,2].

If the dispersion curves are represented via the parametric representation
(4.4c), expression (4.19)) shows that the transverse and divergent waves in
the Kelvin wake correspond to the ranges

0< g™ <1¢%=1/V2m 0.7 < |¢7] . (4.24)
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4.4 Group velocity

The group velocity, i.e. the transmission-velocity of energy, is determined
from the dispersion function A by the general expressions :2.25 . In the
particular case of steady ship waves, these expressions yield %}, where
one has s = 0 in deep water. Expression then yields

s 1 ]vg sign(cosy) | cosy 1 1 | cosvy 1
—= == = ——="9 . - =-9q . cos7y —
FoF | vy 2VEY sin-~y 0 2 | sinvy 0

where kY = F2k is the speed-scaled wavenumber and the dispersion relation

(4.4a]) was used.

These expressions for the group velocity v, yield

~Vo/Vel 1 1+4sin®
{ o }—2{. IHW} where —7 <y <7 (4.25a)
VY Vs siny cos~y

<

and the identity v,/F = V,/V; was used. Expressions (4.25a)) show that
the magnitude of the group velocity is given by

v 1+ 3 sin? 3 3/4
g_¢+=mv_¢_4m%: 3/ (4.25b)

Vi 2 o 1+ tan?y

Expressions (4.25|) determine the transmission velocity Vj of the wave energy
radiated by a ship in its wake.

At the cusps 1* = 4+ of the ship wake, one has tan?y“ = 1/2 in
accordance with 1’ and expression (4.25b)) yields V,/V; = 1/ V2. At

the track ¥* = 0 of the ship, (4.20a) and (4.25b) yield v = 0 or v = 90°
and V; =V,/2 or V; =V, for the transverse or divergent waves, and
yields Vy = =V, /2 if v = 0 (transverse waves) and V, = —V, if v = 90°
(divergent waves) where Vg = (V,0) is the velocity of the ship. The relation
then shows that, in a sea-fixed frame of reference, one has

Ve =V/2if y=0 and V=0 if v =90°.

Expressions (4.25)) for the group velocity and the parametric equations
(4.12) that define Kelvin’s wave pattern show that one has

“~Tn P AL | cosy | (4.26a)
o =4nmw s cosy| . .26a,

These expressions and expressions (4.13b)) and (4.25b)) yield

(—an yn)/h = (=VE V) Vg (4.26b)
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in agreement with the general relation . One then has V' < 0 as well
as X, < 0, and the group velocity V, points toward the wake that trails
the ship. Expression (4.26b]) illustrates how wave energy is transmitted, at
the group velocity v,, along straight lines that radiate from the ship, which
appears to be located at the origin of the wave pattern to a far-field observer
located at a large distance from the ship. The relations and
yield

tan~y

vy Y,
I = " =t e 4.26
. & any 1+ 2 tan%y ( c)

The group velocities V;,T and V. that correspond to the transverse and

divergent waves are given by (4.25b|) where v is taken as v = v7 or v = P
and varies within the ranges (4.21al). Expressions (4.25b) and (4.20a)) yield

VIV = /3 (3 — VI Stan®yr ) costyr 1 V2 (4.27a)
VPV =1/3(3 +V/1— 8tan?g+) cost — 1 /2 . (4.27b)

g

These expressions determine the group velocities V;]T and VgD of the trans-
verse and divergent waves found at a ray angle ¥* within the Kelvin wake.

Expressions (4.27) yield

V,'=V,/2 and VP =V, at * =0, (4.284)
T D C * K

VI=VP=VC=V.V2 at ¢* =+, (4.28b)

1/2< VIV, <1V2< VPV, <1for —gf<yr<yf.  (4.28¢)

Thus, one has 1/2 <V, /Vi < 1. The speed-scaled group velocities V,"/V;
and V;]D/ V; given by 1) are depicted in Fig for ray angles 1* within
the positive half of the Kelvin wake (4.16)).
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Chapter 5

Free waves made by a ship
that advances through
regular waves

The analysis of free waves expounded in chapters 2 and 3 for a broad class
of dispersive plane waves is applied in this chapter to the particular case
of a ship that steadily advances through regular waves in deep water. This
application provides a vivid illustration of the fact that a simple dispersion
relation can define multiple dispersion curves and a surprisingly rich set of
wave patterns that involve widely different waves. [5,1].

5.1 Dispersion curves

The free waves created by a ship that steadily advances through deep-water
regular waves are determined by the dispersion relation (2.9)), i.e.

A(f,a,B;F)=(f+Fa)?—k=(f+Fkcosy)’ k=0 (5.1a)

where k = \/a2+32. The corresponding dispersion curves A = 0 are sym-
metric about the axis =0, and can be expressed in the Cartesian form

B(a: f,F) = +/(JT Fay—a? (5.1b)
The dispersion relations (5.1)) yield
k/f?=1 and B/f?=+1 for a=0. (5.2)

Thus, the dispersion curves intersect the axis o = 0 at 3 = £ 2.
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Polar representations of the dispersion curves

The dispersion curves associated with the dispersion relation (5.1a)) can be
expressed in the polar form

L 1/2 —rcosy £/1/4 —Tcosy _ (/1/4—Tcosy £1/2)° 653

F2 cos2y F2 cos2y

where 7 denotes the parameter defined by as
T=Ff=V,w/g. (5.4)
The wavenumber is not a real number if 1/4 < 7 cosy, i.e. if
— 7 < <47 where 747 = arccos[(1/4)/7] and 1/4 < T. (5.5)

The =+ branches of the polar representation (5.3) can be expressed as

EV = F?k = (\/1/4 — 7 cosy 4 1/2)?/cos®y and (5.6a)
kY =k/f2=1/(/1/4 — 7 cosy +1/2)? (5.6b)

where k¥ =Kg/w? =k/f* and kY = KV?/g=F%k (5.7)

are the frequency-scaled or the speed-scaled nondimensional wavenumbers

defined by (1.35atb).

The dispersion curves defined by (5.6)) intersect the axis 5 =0 for v =0
and v = w. The wavenumbers corresponding to these intersection points are

F?kF = (\/1/4—7 +1/2)?
F?k; = (\/1/4+ 7 +1/2)?
EHf2=1/(\/1/4—1 +1/2)?
ki/f2=1/(\/1/4+71 +1/2)?

where £k} and kj correspond to v = 0, and k_ and k; correspond to y = .
The intersection wavenumbers k, and k; are real for every value of 0 < 7,
but the wavenumbers k} and k] are only real if 7 < 1/4. Expressions (5.8))
yield

(5.8)

kE/f2=1and F2kF =1 if7=0, (5.92)
kT ko kT 4 k

Sy =20 i " (07, 2 =4(+2+1)*>~23

I Iz 2 (V2+1)? 12 ( )
ifr—1/4. (5.9b)
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Dispersion curves for 7 < 1/4

If 7 < 1/4, the condition 7 cosy < 1/4 that ensures that the wavenumbers
defined by (5.6)) are real is always satisfied, and the polar representations
(5.6 yield the three dispersion curves

kY = (v/1/4 — 7 cosy +1/2)%cos?y where /2 <~y <37/2, (5.10a)
k¥ =1/(\/1/4 — 7 cosy +1/2)? where 0 <~ < 2, (5.10Db)
kY = (\/1/4 — 7 cosy +1/2)%/cos?>y where —n/2<~y<m/2. (5.10c)
These dispersion curves are located within the three regions
—co<a<—k,, —kiy <a<ki,kl<a<oco ifr<1/4. (5.11)

The dispersion curve in the inner region —k; < o <k in (5.11)) is called
‘inner dispersion curve’ and is denoted as I hereafter. The dispersion curves
in the two outer regions —oo < a < —k, and k:;“ < a < oo are similarly
called ‘outer dispersion curves’ and are denoted as O~ or Ot.

In the special case 7 = 0, the dispersion curve defined by ([5.10b)) becomes

kY =k/f =1 (5.12a)

in agreement with the dispersion circle (2.10) associated with diffraction-
radiation of regular waves by an offshore structure, and the dispersion curves
(5.10c]) are symmetric about the axis & = 0 and given by

kY = F?k =1/cos’y where —m <y <7 (5.12b)

in agreement with the dispersion curves (4.4)) associated with ship waves in
calm deep water.

In the special case 7 = 1/4, one has kj = k} = 4f? in accordance
with . The dispersion curves in the regions —k; < a < kj‘ and
k¥ < a < oo are then connected at o = 4f? in this special case. Thus, the
dispersion curves are located in the regions

—co<a<—k; and —k; <a<oo if 71=1/4. (5.13)

The (closed) inner dispersion curve I defined by (5.10b]) and the two
(open) dispersion curves O~ and O defined by (5.10a) and (5.10c) are
depicted in Figls.1]for 7 = 0.2 and 7 = 1/4 in the Strouhal-scaled Fourier
plane (a® %) = (K? KY)V,/w associated with the representation
given further on. Figl5.1] shows that the inner dispersion curve I and the
outer dispersion curve Ot are connected at o = 1 if 7 = 1/4, in accor-
dance with (5.13) and the relation o® = Ta*. Fig also illustrates the
notable feature that the wavenumbers k; and k; associated with the inner
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Figure 5.1: This figure depicts the closed inner dispersion curve I and the
two dispersion curves O~ and O defined by the dispersion relation (|5.1)) in
the regime 7 < 1/4. These three dispersion curves are depicted for 7 = 0.2

and 7 = 0.25 in the Strouhal-scaled Fourier plane (a® 3%) = (K2, KY)V, /w.

Figure 5.2: This figure depicts the dispersion curves defined by in
the regime 0 < 7 < 1/4. The figure on the left side depicts the outer
dispersion curves O~ and O in the speed-scaled Fourier plane (aV, 3Y) =
(K* KY)V??/g and the figure on the right depicts the inner dispersion curve
I in the frequency-scaled Fourier plane (o, %) = (K% KY)g/w?.

dispersion curve I are significantly smaller than the wavenumbers k, and
k7 associated with the outer dispersion curves O~ and OT for 7 < 0.2.
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The inner and outer dispersion curves defined by the dispersion relation
in the regime 7 < 1/4 are further considered in Fig Specifically,
the left half of Fig depicts the outer dispersion curves O~ and O7 in the
speed-scaled Fourier plane (o, V) = (K% KY)V2/g for 7 =0, 0.1, 0.2 and
1/4, and the right half of the figure depicts the inner dispersion curve I in
the frequency-scaled Fourier plane (a*, ) = (K% KY)g/w? for the same
values of 7 within the range 0 < 7 < 1/4.

The polar representations of the inner dispersion curve I and the
outer dispersion curves O~ and O™ are well suited to represent the flow
created by an arbitrary distribution of singularities (sources or dipoles) in
the regime 7 < 1/4.

Dispersion curves for 1/4 < 7

For 1/4 < 7 and —7/2 < v < w/2, the condition 7cosy < 1/4 that en-
sures that the wavenumbers defined by (5.6]) are real is not satisfied if (5.5)
holds. The constraint ([5.5) is irrelevant for the dispersion curve defined by

(5.10a)) but restricts the ranges of the polar angle 7 in expressions ((5.10btc).
Specifically, the polar representations (5.10) become

(\/1/4 — T cosy +1/2)%/cos®y where 7/2<vy<3n/2, (5.14a)
1/(z\/1/4 — T cosy +1/2)? where v7 <~y < 27 —~7, (5.14b)
(\/1/4 — T cosy +1/2)%/cos®y where
(

—m/2<y < —ATYU (Y <y<m/2). (5.14c¢)

k
k

kV
w
v

These dispersion curves are located within the three regions
—oo<a<l—ky, —k <a<a,, apo<a<oo if 1/4<7 (5.15a)
where «;, and the corresponding values of § and k are given by

Qio = f2 T =f/F | Bio==2f>/16—1/72 , kiy =4f>.  (5.15b)

The two regions —k; < o < ;o and o, < a < 0o are contiguous. The
inner dispersion curve I located in the region —k; < a < o4, and the
outer dispersion curve OT located in the region a;, < a < oo are then
two portions of the continuous dispersion curve I U Ot, denoted as IO+
hereafter, that is located in the region —k; < a < co. One then has only
two dispersion curves O~ and TO™ located in the regions

—oo<a<—k, and —k; <a<oo if 1/4< 7. (5.15¢)

The point (a0, fio) that separates the connected dispersion curves I
and OV in the two contiguous regions —k; < a < @, and a;, < a < o0 in
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Figure 5.3: This figure depicts the inner dispersion curves I located in the
region —k; < a < oy, in and defined by in the frequency-
scaled Fourier plane (a*, %) = (K% KY)g/w? for 7 = 0.3, 0.5, 1 and 3.
The circle k“ = 4 that separates the inner dispersion curve I and the outer
dispersion curve O% in the three regions in associated with the
regime 1/4 < 7 is also depicted.

(5.15a)) is located on the circle k = 4f2. One has
(ay,82)=(4,0) if 7=1/4 and (af,B8y)— (0,£4) as 7 — o0

where (a¥, %) = (a, B)/f?. The circle k¥ = 4 is depicted in Fig, where
the dispersion curve I associated with the inner region —k; < a < o in
(5.15a)) and defined by (5.14b)) is also depicted for several values of 1/4 < 7.
Expressions and (|5.8)) show that one has k;, = k if 7 = 3/4.

The polar representations of the dispersion curves for 7 < 1/4
are identical to the polar representations for 1/4 < 7 if 47 in
is taken as 77 = 0. Thus, the representations can be used for every
value of 7 if 47 is defined as

F=0ifT7<1/4 or A7 =arccos[(1/4)/7]if1/4< 1. (5.16)

The polar representations (5.14]) can also be expressed in terms of the
Strouhal-scaled wavenumber k° defined by (1.35c)) as

=KV, /w. (5.17)
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Figure 5.4: This figure depicts the two dispersion curves O~ (left side) and
IO™ (right side) defined by the dispersion relation for = 0.4,1,3
in the Strouhal-scaled Fourier plane (o 3%) = (K® KY)V, /w. The vertical
line a® = —1 is also shown.

Specifically, the relations F?k = 7k% and k/f? = k°/7 and expressions
(5.14) define k°(v;7) via the polar representations

kS = (\/m +1/2)?/(7cos®y) where m/2<~y<37/2, (5.18a)
kS =1/(V/1/4 = 7 cosy +1/2)% where 77 <y <27 —47, (5.18b)
S = (VT e +1/2Y(rcos®)

where (—7/2 <y < —AT)UR <~v<7/2). (5.18c¢)

As was already noted and is illustrated in Fig, the wavenumbers k;
and k;r associated with the inner dispersion curve I are significantly smaller
than the wavenumbers k&, and k7 that correspond to the outer dispersion
curves O~ and O% for small values of 7, i.e. in the regime 7 < 7% where
7%~ 0.2. Indeed, the frequency-scaling k“ = Kg/w? and the speed-scaling
kY = K'V.?/g are well suited to represent the inner dispersion curve I or the
outer dispersion curves O~ and OV in the regime 7 < 1/4, and these two
alternative scalings are used in Figl5.2].

The Strouhal-scaling is well suited to represent the dispersion curves in
the regime 0.25 < 7, as is illustrated in Fig[5.4], and is particularly well
adapted for very large values of 7 as is illustrated in Fig[5.5. Indeed, the
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Figure 5.5: Dispersion curves that correspond to 7 =1, 5, 10 and 20 in the
Strouhal-scaled Fourier plane (o 3°) = (K% KY)V;/w. The vertical line

a® = —1 is also shown.

Strouhal-scaling is preferable to the frequency-scaling or the speed-scaling
for large values of 7 > 7% with 70~ 0.4.

Regime 0.25 < 7 < /2/27 ~ 0.272

Ifr<1/4, Fig and Fig show that a constant- line intersects the
outer dispersion curve O~ at a single point, and also intersects the outer

dispersion curve O at a single point. If 1/4 < 7, Fig and Fig show
that a constant- line also intersects the outer dispersion curve O~ at a
single point. However, a constant-3 line can intersect the dispersion curve
IO™ at a single point or at three points, as can be observed in Fig and
is now shown.

A constant-£3 line is tangent to the dispersion curve IOV at a point where

A =0and A, = 0. Expression (b.1a)), where 0 < f+ F« for the dispersion
curve O™, and expression (2.31c) for the derivative A, of the dispersion
function A then yield

cosy = (Vk — f)/(Fk) = 27/(1— 2F%k)

at a point where a constant-{ line is tangent to the dispersion curve IO¥.
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Figure 5.6: The figure on the left depicts the dispersion curves O~ and IO,
located in the regions —oo < a < —k_ and —k; < a <oo in , in the
Strouhal-scaled Fourier plane (a” 5%) = (K KY)V,/w for 0.25 < 7 < 0.4.
The figure on the right depicts the dispersion curve O™ in the vicinity of
the origin of the frequency-scaled Fourier plane (a®, %) = (K% KY)g/w?
for five values of 7 in the range 0.25 < 7 < 0.4.

It follows that such a point corresponds to a root of the equation
(k) — 72 (k*)? + k¥/4 —1/4 = 0 where k¥ = k/f? (5.19)

is the frequency-scaled wavenumber. The discriminant of the cubic equation
(5.19) is given by D = (2 —2772)7%/16. This cubic equation has three real
roots if 0 < D, i.e. if

T<\/2/27T~0.272 . (5.20)

Two of the three real roots correspond to two points where A = 0 and
A, = 0. Thus, a constant-3 line intersects the dispersion curve IOT at a

single point if 1/2/27 < 7 or at three points if 1/4 < 7 < /2/27 as is
illustrated in the figure on the right half of Figl5.6].

Cartesian representation of the two outer dispersion curves
for0<7<1/4

The closed dispersion curve in the inner region —k; < o < kj is conveniently
represented in the polar form . The two open dispersion curves in
the outer regions —oo < o < —k, and k:j,‘ < a < > can also be represented
in the polar form (5.10a)) and (5.10c|). However, in the special case f = 0,
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these dispersion curves are conveniently expressed in the Cartesian form

F2a::|:\/1/2+\/1/4+(F25)2 where —oco < < 00. (5.21)

This Cartesian representation of the outer dispersion curves OF is now
extended to the more general case 0 < 7 < 1/4.
Expression (5.1a]) for the dispersion function A shows that the dispersion
curves A = 0 are roots of the quartic equation
st — s+ 275 —t* =0 where (5.22a)
s=F?a+71, t?=712+0v* and v = F?p (5.22b)

Addition and subtraction of the term bs%+ b2/4 in (5.22al) yields

(s2+b/2)%— (Vb+15—+/b2/4+12)2=0 (5.23)
if b satisfies the equation
B+ b2+ 4t°b+40%=0. (5.24)

The three roots of the cubic equation (5.24) are given by

by=—1/3—(S+T) (5.25a)
by =—1/3+(S+T)/2—1(S—T)V3/2 (5.25b)
by =—1/3+(S4+T)/2+i(S—T)v3/2 where

S=(D—-R)? and T = —Q/S with D= Q>+ R? (5.25¢)
Q- 4T2+(21«“32ﬁ)2—1/3 and R — 272 — (2}«“325)2—1/9  (5.25q)

The root b; is real and the roots bs and bs are complex conjugates if D > 0
and v'D — R > 0. The root by is real and the roots b; and b3 are complex
conjugates if D > 0 and vD — R < 0. The three roots are real if D < 0.
The root b defined as

b{ by if Q*+R?>0 and /Q*+R?—-R<0 (5.26)

b1 otherwise

is then real and is chosen. It can be verified that —1 < b < 0.

Expression (|5.23)) shows that the roots of (5.22)) are given by the roots
of the two quadratic equations

52+\/b+15+(b/2—\/b2/4+t2) =0 (5.27a)
s2—Vb+1s+ (b/2 +4/b%/4 + t2) =0 (5.27b)
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where 2 = v? 4+ 72 in accordance with (5.22b)). The quadratic equation
(5.27a]) has two roots

st =+v0/2—V1+b/2 where (5.28a)
§=1—b+4/b2/4+ 124 (F25)2 (5.28b)

The two roots ([5.28a)) are real and correspond to the two outer dispersion
curves O" and O~ for 7 < 1/4.

Expressions (5.22b)) and (5.28) then determine the two outer dispersion
curves OF as

F2a* = i\/lib +V/ 04+ T2+ (F28)? — 12+b

where b is given by (5.26)) with (5.25). The Cartesian representation ([5.29)

of the dispersion curves in the regions —oco < a < —k, and k} < a <o
agrees with the representation in the limit f = 0, as is required to
obtain consistent representations of flows around ships steadily advancing
through regular waves or in calm water.

-7 (5.29)

Cartesian representation of the dispersion curves for 7*~ 0.3 < 1

In the regime /2/27 < 7% < 7, a constant-f3 line intersects the dispersion
curve O~ at a single point and similarly intersects the dispersion curve IO+
at a single point, as was just shown and is illustrated in Fig[5.4] Fig[5.5 and
Fig. The dispersion curves O~ and IOT can then be represented as

o =a%(B% 1) or a® = ai(ﬂs;r) (5.30)
where the Strouhal-scaling ([1.35¢|) is used.
In the regime 7% ~ 0.3 < 7 now considered, expressions (5.25d) yield

Q*+R?>>0 and VQ3+R2—R>0.
The real root b of the cubic equation (5.24) is then given by b = b; in
accordance with (5.26). Specifically, this root is defined by (5.25al) and
(5.25¢) as
b=—-1/3+(/Q3+ R2+ R)'3 - (\/Q3+ R2 — R)/? (5.31a)

where @@ and R are defined by (5.25d). The functions o® = af (%) in
(5.30) are given by equation (5.29)), which can be expressed as

aii\/iﬂb +\/b2/(27)2+1+(55)2/7—@—1. (5.31b)

Expressions (5.30) and (5.31]) provide Cartesian representations of the dis-
persion curves O~ and IOV for 7% < 7 with 7% =~ 0.3.

81



5.2 Fundamental wavenumbers

The wavenumber & that corresponds to points («, 8) of the outer dispersion
curve O~ in (5.11)) and (5.15a)) varies within the range

ky <k<oo for 0<7<00. (5.32a)

Similarly, the wavenumber k associated with the inner dispersion curve [ in

(5.11) and (5.15a)) varies within the ranges

ki <k<kf for 0<7<1/4, (5.32b)
k; <k <k for 1/4 <1 <00, (5.32¢)

Finally, the wavenumber associated with the outer dispersion curves O in

(5.11) and (5.15a)) varies within the ranges

Ef <k<oo for 0<7<1/4, (5.32d)
kio <k <oo for 1/4<7<00. (5.32¢)

The five wavenumbers k, , k; , k;-r, kF and oy, are reference wavenumbers

for the inner and outer dispersion curves located in the regions (5.11f) and
5.15af). These five basic wavenumbers are now considered. Expressions

[5.8), (5.15b) and the relation k F/f = k% yield

(k)5 = (\/1/4+T1 +1/2)%/7

S g g VNS = (VAT +1/2)r

Fio =4 d (k%) =7/(\/1/d+7 +1/2)? (5:33)
(EF =71/(\/1/4—1 +1/2)?

Expressions ((5.33)) yield

(k%) =1= (k%)
(k5); =1/(V2+1)2~ 017y ifr=1/4, (5.34a)
(k%); = (V2+1)2~5.83

(k)7 =1/3 and (k%); =3 ifr=3/4. (5.34b)
Expressions ((5.33)) also show that one has

(k9)FE ~7 and (K)E~1/1 asT =0, (5.35a)
(%), ~ 1~ (k%) asT — oo (5.35b)

The approximations (5.35a) yield k; ~ k;" and k; ~ k¥ as 7 — 0, and
EE/kE ~ 72 asT = 0. (5.36)
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(t—=1/4)/(t 4+ 1/4)
Figure 5.7: This figure depicts the speed-scaled wavenumbers F2k, and
F2k} (top), the frequency-scaled wavenumbers k; /f? and k;/f? (center),
and the Strouhal-scaled wavenumbers ki F/f, k= F/f and k;, F/f = 47 (bot-
tom).
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o’ = aF/f

-1 -0.5 0 0.5 1
(r—1/4)/(t1+1/4)

Figure 5.8: This figure depicts the Strouhal-scaled wavenumbers a® that
correspond to the boundaries o = —k_, —k;, kj, k}, ai, of the regions
that contain the dispersion curves associated with a ship steadily advancing
through regular waves in deep water.

Thus, the inner wavenumbers k; and kj' are much smaller than the outer
wavenumbers k, and k7 for small values of 7.

The basic wavenumbers k", k;", k,, kI given by 1D are depicted in
Fig for 0 < 7 < 1/4. This figure also depicts the wavenumbers k; , k,
and k;, for 1/4 <7 < oc0.

Fig[5.7 shows that a ship that advances through regular waves creates
waves of widely different lengths, notably for 7 < 0.2. Indeed, the wavenum-
bers kE and kF (and the corresponding wavelengths A = 27 /k) can differ
significantly from the wavenumbers k/f? =1 or F?k = 1 that correspond
to the limit F' = 0 or the limit f = 0. The wavenumbers (%)} and (k)7

decrease, but (k%) and (k°); increase, as 7 increases from 0 to 1/4.

Fig also shows that k; is the smallest wavenumber. Thus, a ship
that advances through waves creates waves with wavenumbers k; < k& and
wavelengths A < 27/k; .

Moreover, Fig[5.7 shows that one has

ki <kf<ki<kj 0<7<1/4
ki <kio <k, for { 1/4<7<3/45 . (5.37)
k; <k, <k 3/4< 1 <00

The dispersion curves are contained within the regions defined by (5.11))
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and (5.15a)) as

—co<a< -k, , —k;y <a<kl,kl<a<oco if7<1/4
—oo<a<l -k, , -k <a<ap, app<a<oo if 1/4<7T
where kf and kli are given by l) and «;, is defined by (5.15b)). The
Strouhal-scaled wavenumbers o that correspond to a = kg, =k, k;-r,

k} and oy, are depicted in Fig for 0 <7 < 0.

5.3 Limits 7 — 0 or 7 — o0

The dispersion curves associated with ship motions in regular waves and the
related fundamental wavenumbers are now further considered in the limit
7 — 0 and the limit 7 — co.

Limit 7 — 0

Expressions (5.8)) yield the asymptotic approximations

F?kf ~1—-27—7% and F?k; ~1+27—7% as 70, (5.38a)
k?_/f2~1—|—27'+572 and ki_/f2~1—27'+57'2 as 7 — 0. (5.38b)

These approximations yield kli ~ 72k* as 7 — 0 in agreement with .
Moreover, as is noted in (5.12)), expressions (5.10a)) and both become
F?k =1/cos?*y and expression (5.10b]) becomes k /f? =1 in the limit 7 = 0,
in agreement with the dispersion relations and associated with
wave diffraction-radiation by offshore structures and steady ship waves.

Indeed, for 0 < 7 < 0.1, the dispersion curve associated with the inner
region —k; < a < k;r in does not differ greatly from the dispersion
circle k& = f? that corresponds to the special case F' = 0 and offshore
structures in regular waves, as can be observed in Fig[5.2] Similarly, for
0 < 7 < 0.1, the dispersion curves associated with the two outer regions
a < -k, and k} < ain do not differ greatly from the dispersion
curves associated with the special case f = 0 and steady ship waves, as can
also be observed in Fig[5.2]

The dispersion curve in the inner region —k; < o < k:l+ in corre-
sponds to the limit F< 1 with f = O(1) that is associated with a ship that
advances through regular waves at low speed or an offshore structure in a
uniform current, for which the ship creates short waves with O(F?) wave-
lengths. The dispersion curves in the outer regions a@ < —k and k} < «
correspond to the limit f < 1 with F = O(1) associated with a ship that
advances through long (low-frequency) waves.
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Thus, the inner and outer dispersion curves in ([5.11)) are associated with
a decomposition of the limit fF — 0 into the two limits

F— 0 with f=0(1) and f— 0 with F=0(1).
The dispersion relation can be expressed in the alternative forms
(1+ 7k%cosy)? = k¥ where k* = k/f?, (5.39a)
(kVcosy +7)* = kY where k' = F?k , (5.39b)
associated with the frequency-scaled or speed-scaled wavenumbers k“ or

kY that are appropriate for an offshore structure in regular waves or a ship
steadily advancing in calm water, and are related to the dispersion curves

defined by (5.6a)) and (5.6b)).
The dispersion relations (5.39) can be expressed as

K —1—27rKcosy — T2K%cos?y = 0 where k = k/f?, (5.40a)
Kk — Kk2cos’y — 2Tk cosy — 72 = 0 where k= F2k | (5.40b)

respectively. The dispersion curves defined by these dispersion relations can
be studied in the limit 7 — 0 via the asymptotic expansion

n~1€0+7/~€1+72/€2+73m3+-~-

By substituting this expansion into the dispersion relations (5.40) and
grouping the expressions that are O(1),0(7),O(7?),... one obtains

E/f2 14 2p+5p+14p + 424 + 1325+ - - (5.41a)
F?kcos®y ~1—2pu—p? —2p3 = 5p* —14p° + - - (5.41Db)
as p=T7cosy —+ 0.
The asymptotic approximation (5.41a)), where —7 < v < 7, defines the
inner dispersion curve associated with the limit F' — 0 with f = O(1)
that corresponds to wave diffraction-radiation at low forward speed. The
approximation ([5.41b]) defines the outer dispersion curves corresponding to
diffraction-radiation of long waves and the limit f— 0 with F' = O(1). The

ranges —m/2 <y < w/2 and 7/2 < v < 37/2 in (5.41b) define two distinct
dispersion curves.

Limit 7 — o

The asymptotic approximations show that Strouhal scaling of the
Fourier plane is appropriate for large values of 7 associated with diffraction-
radiation of regular waves in the high-frequency and/or high-speed regimes.
Indeed, expressions yield

1 1

1 1
(ks);fvl—%—i—ﬁ and (ks);~1+\—ﬁ+ﬁ as T — oo . (5.42)
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The dispersion relation ([5.1a)) can be expressed as
(1+a%)? = (14 kScosy)? = k5/1 . (5.43)

This dispersion relation yields the dispersion curves o = —1 in the limit
7 — 00. The dispersion curves defined by are depicted in Fig for
several large values of 7 in the Strouhal-scaled Fourier plane appropriate in
the high-speed and/or high-frequency regime.

5.4 Wave patterns

The far-field wave patterns associated with the dispersion curves analyzed
in the previous section are now considered.

Analytical representation of wave patterns

The far-field wave pattern that corresponds to a dispersion function A is
determined from A via the general parametric equations 7 where o®
is given by for the dispersive waves considered in this chapter. The
patterns of far-field waves created by a ship that steadily advances through
regular waves are then determined by the parametric equations

h, = {ijn } = ZLAZ {A@ } where o2 = sign (i, — ) , (5.44a)
expression ((5.15b)) for «;, was used and A is the dispersion function (2.9).
The derivatives A,, Ag and Ay of A in (5.444) are given by (2.31c) as
A, =2F(f+ Fkcosvy) —cosy
Ag = —siny (5.44b)
Ap =2F(f+ Fkcosy)cosy —1
where the wavenumber k is defined in terms of the wave-propagation angle
~ via the dispersion relation ([5.1a)).

The three regions (5.11)) and (5.15a]) associated with the inner and outer
dispersion curves for 7 < 1/4 or 1/4 < 7 and Fig show that the sign-

function o2 in (5.44al) is given by

02 =11in —oo < a< —k, for all values of 7, (5.45a)

—k; <a<kff <1/4
oA [ TR Saskiforr<1fa] (5.45b)
—k7 <a<afor 1/4<71
A L kl <a<ooforr<1/4 A
T T T M Y, <a<ocofor 1/4< T (5.45¢)
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The parametric representation (5.44)) of the wave patterns yields the alter-
native representations

e 2nmwol k¥ cosy — 27 (1+ 7k¥ cos”)
~ 1—27(1+ 7k“cosy) cosy ’

Y siny

(5.46a)
x“é _ 2 Téﬂ'O’A/kV 2(r + kvc?sy) — cosy  (5.46D)
Y, 2(1 + kVcosvy) cosy — 1 —siny
xé _ 2nmwol kS 27(1+ kS C(-)S’}/) — cosy (5.46¢)
Yo 27 (1+ kScosvy) cosy —1 —siny

in terms of the frequency-scaling, the speed-scaling or the Strouhal-scaling

defined by (1.35]).

The wave patterns that correspond to the inner and outer dispersion
curves located in the regions (5.11)) and (5.15a)) are then determined by the
alternative parametric equations ([5.46)) with expressions for the sign
function o® and the corresponding alternative polar representations ,
, of the dispersion curves. These alternative representations
of the dispersion curves and the related wave patterns correspond to the
alternative scalings defined by associated with the alternative choices

L.=g/w®, L,=V?%g, L,=V,Jw (5.47)

of reference length L.

Wave patterns for 7 < 1/4

The frequency-scaled parametric representation is best suited to
represent the waves associated with the dispersion curve I defined by
and located in the inner region —k; < o < kj‘ in for 7 < 1/4.
These waves, depicted in Figl5.9] for several values of 7 within the range
0 < 7 < 1/4, form a set of roughly circular waves, called ‘ring waves’
hereafter. These ring waves are concentric circular waves in the limit 7 = 0.

The speed-scaled parametric representation is best suited to rep-
resent the waves associated with the outer dispersion curves O~ and O
that are defined by and and are located in the two outer
regions —oo < a < —k, and k} < a < oo in for 7 < 1/4. These
two wave patterns are depicted in Figl5.10] for several values of 7 within the
range 0 <7 < 1/4.

The wave patterns depicted in Figl5.10] are qualitatively similar to the
Kelvin wake of a ship advancing in calm water considered in chapter 4. In
fact, these waves contain transverse and divergent waves inside the wedges
formed by cusps of the wave patterns. The cusp angles of the two wave

88



30 30

7=0 7=02

20 20
2 10 10
~
3
~ 0 0
I
3,10 -10

-20 -20

-30 -30

30 20 -10 O 10 20 30 40 -30 -20 -10 O 10 20
30 30
7=0.15 7=0.25

20 20
2 10 10
(]
3
~ 0 0
I
3410 -10

-20 -20

-30 -30

40 -30 -20 -10 O 10 20 40 -30 -20 -10 O 10
= Xw?/g = Xw?/g

Figure 5.9: Frequency-scaled ring waves associated with the inner dispersion
curve [ in the region —k; < a < k;r for 7 =0, 0.15, 0.2 and 0.25.

patterns, called ‘inner V waves’ and ‘outer V waves’ hereafter, depicted in
Fig[5.10] vary with 7, as is considered further on. These inner and outer V
waves are associated with the dispersion curves O~ or O% located in the
outer regions —oo < a < —k, or kI < a < oo, respectively, in .

Wave patterns for 1/4 <t

The inner V waves associated with the outer dispersion curve O~ and the
region —oo < o < —k, in and exist in the regime 7 < 1/4
considered in Fig and also exist in the regime 1/4 < 7. The patterns
of inner V waves are depicted in Figl5.11] for several values of 7 within the
range 0 < 7 < 1. This figure shows that the inner V waves are qualitatively
similar for 1/4 < 7 and 7 < 1/4. Fig[5.11] also shows that the cusp angle,
denoted as ¢}, of the inner V waves decreases as 7 increases and is smaller
than the Kelvin angle 9% ~ 19°28’, which corresponds to the limit 7 = 0.

In addition to the inner V waves associated with the outer dispersion
curve O~ and the region —oo < a < —k in , a ship that advances
through regular waves at 1/4 < 7 creates two sets of waves that correspond
to the inner dispersion curve I and the outer dispersion curve O+ associated
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Figure 5.10: Speed-scaled inner and outer V waves associated with the
outer dispersion curves O~ and O™ in the two regions —oo < a < —k, and
kT <a <oofor 7 =0, 0.15, 0.2 and 0.25.
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Figure 5.11: Speed-scaled inner V waves associated with the outer dispersion
curve O~ in the region —oo < a < —k, for 7 =0, 0.25, 0.5 and 1.

with the contiguous regions —k; < a < ay, and o, < @ <00 in .
The waves associated with the dispersion curves I and OT in the regime
1/4 < 7 form a pattern of partial (incomplete) rings and fan-like waves,
called ‘ring-fan waves’ hereafter, that are connected by cusps. These ring-
fan waves are depicted in Fig for several values of 1/4 < 7.

More precisely, the waves that correspond to the inner dispersion curve
I associated with the region —k; < a < a, in ((5.15a)) form a set of ‘partial-
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Figure 5.12: Strouhal-scaled partial-ring and fan waves associated with the
dispersion curve JO™ in the two contiguous regions —k; < a < «a;, and
o < a < oo for 7 =0.25, \/2/27 ~ 0.272, 0.3 and 0.5.
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Figure 5.13: This figure depicts all the (Strouhal-scaled) wave patterns for
two values of 7 within the regime 7 < 0.25, for which three families of
waves—inner and outer V waves, and ring waves—exist. The inner and
outer V waves are much shorter than the ring waves and only exist behind
the ship, whereas the ring waves exist ahead and behind the ship.
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Figure 5.14: This figure depicts all the (Strouhal-scaled) wave patterns for
7=0.25" and 7 = 0.25%.
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Figure 5.15: This figure depicts all the (Strouhal-scaled) wave patterns for
two values of 7 within the range 0.25 < 7 < /2/27 ~ 0.272, for which
three families of waves—inner V waves, partial ring waves, and (inner and
outer) fan waves—exist. The inner V waves and the inner fan waves only
exist behind the ship, whereas the partial ring and the outer fan waves exist
ahead and behind the ship in the regime 0.25 < 7 < 1/2/27.

ring waves’ and ‘outer-fan waves’ that are connected at cusps. The waves
that correspond to the outer dispersion curve O associated with the region
Qi < a < o0 in form a system of fan waves, called ‘inner-fan
waves’. The line that separates the ‘outer-fan waves’ and the ‘inner-fan
waves’ corresponds to the boundary o = a;, between the inner region I and
the outer region OV in . This separation line is considered further
on.
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Figure 5.16: This figure depicts all the (Strouhal-scaled) wave patterns for
three values of 7 within the regime 1/2/27 ~ 0.272 < 7, for which no waves
exist ahead of the ship and three families of waves—inner V waves, partial
ring waves, and (inner and outer) fan waves—exist behind the ship.

Complete wave patterns for 0 < 7

The complete wave patterns that correspond to the inner dispersion curve
I and the outer dispersion curves O~ and OT or IO" are depicted in Figs
Specifically, Figl5.13] depicts all the wave patterns created by
a ship that steadily advances through regular waves at two values of 7 in
the regime 7 < 0.25. Fig[5.14] similarly depicts all the wave patterns for
7 =0.25" and 7 = 0.257. The wave patterns for two values of 7 in the
regime 0.25 < 7 <1/2/27 ~ 0.272 are depicted in Figl5.15| Finally, Figl5.16]
depicts the wave patterns for three values of 7 in the regime \/ 2/27 < T,
for which no waves exist ahead of the ship.
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Figs p.13 show that a ship that advances through regular waves
creates a rich set of diverse waves of widely different lengths, in accordance
with Fig[5.71 These four figures also show that the wave patterns vary
rapidly for values of 7 in the vicinity of 7 = 1/4.

5.5 Main features of wave patterns

The speed-scaled form of the dispersion relation (|5.1b]) yields

BY=y/(aV+ 1)t = (V) and K= (¥4 7)?  (5.48)

where only the upper half 3V > 0 is considered due to symmetry. The
relations cosy = a"/kY and siny = BY/kY and expression (5.46b) then
yield

v _V@E @ P @)

¥V 2(V+ 73—V 272(aS+1)3—ad

tany* = (5.48Db)

where 9* is measured from the negative z axis (x < 0,y = 0) i.e. from the
ship track, which corresponds to ¥ = 7 and ¥* = 0. The relations (|5.48))
are used further on in section 5.5.

Basic components of wave patterns

The inner V waves depicted in Fig consist of transverse and divergent
waves located inside a wedge formed by the cusps of the wave pattern. These
divergent / transverse waves are associated with the contiguous portions

Divergent inner V waves: —oo < a < —ajy (5.49a)

Transverse inner V waves: —a§, < a < -k (5.49b)

of the outer dispersion curve O~ located in the region —oco < o < —k, in

(5.11) and (5.15a]). The wavenumber oo = —a$;, that separates the divergent
and transverse inner V waves and corresponds to the cusps of the pattern

of inner V waves is given further on.

The outer V waves, which exist if 7 < 1/4 and are depicted in Fig5.10}
similarly consist of transverse and divergent waves, which are associated
with the contiguous portions

Transverse outer V waves: kI < a < afy, (5.50a)

Divergent outer V waves: agy < a < 00 (5.50b)

of the outer dispersion curve O located in the region kj < a < oo in ([5.11)).
The wavenumber o = a¢,, that separates the transverse and divergent outer
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V waves and corresponds to the cusps of the pattern of outer V waves is
given further on.

Finally, the ring-fan waves, which exist if 1/4 < 7 and are depicted in
Fig[5.12] consist of partial-ring waves and outer and inner fan-like waves.
These waves, located inside a wedge formed by the cusps of the pattern of
ring-fan and outer-fan waves, are associated with the contiguous portions

Partial ring waves: —k; <a <ay; (5.51a)
Outer fan waves: a;; < a < ajp (5.51b)
Inner fan waves: a;, < a < 00 (5.51c)

of the dispersion curve IO* located in the region —k; < o < oo in ([5.15¢).

Fan-waves angle ¢; and asymptote lines

The inner and outer fan waves in are separated by a straight line that
corresponds to & = o, i.e. &V = 7. Expression then shows that
the angle, denoted as ¢, of the line that divides the inner and outer fan
waves is given by

tanyy =1/1/167% —1 where 1/4 <. (5.52a)

This expression yields
90° >4f >0 as 1/4<T1<o00 (5.52b)

and shows that the angle of the fan waves decreases as 7 increases, as is

illustrated in Fig and Fig[5.16]. These figures and Fig show that
the lines ¢ = =47 are asymptote lines of the wave patterns, in accordance

with the analysis given in section 3.6. Specifically, expressions (5.44b|) and
(5.15b)) show that one has kA =0 if @ = aj, and k = k;,.

Cusps of wave patterns

The cusps of the wave patterns depicted in Figs[5.10H5.16| stem from in-
flection points of the dispersion curves defined by (5.48al). These inflection
points are determined by the inflection-point condition d?8Y/d(a')? = 0,

in accordance with (3.24dl). The dispersion relations ([5.48a)) then yield the

equivalent alternative quartic equations

2"+ 1) = 3(")* + 27" - 712=0, (5.53a)
272+ 1) =3 (a®+1)2+8(a”+1)—6=0, (5.53b)
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Figure 5.17: This figure depicts the angle ¢} of the fan waves and the cusp

angles V7, iy, and ¥7, of the inner V waves, the outer V waves and the
ring-fan waves.

in accordance with the relation o' = 7a®. The cusps of the wave patterns

created by a ship that advances through regular waves are then determined

by (5.48b)) where o are roots of the quartic equation ([5.53).

The angle, denoted as 1)}, of the cusps of the inner V waves corresponds
to the root o of (5.53)) that is located in the region —co < o < —k, in
if 7 < 1/4 or (5.15a]) if 1/4 < 7. Similarly, the angle ¥, of the
cusps of the outer V waves, which exist if 7 < 1/4, corresponds to the root

oV of equation (5.53) that is located within the region £} < a < oo in
(5-11). Finally, the angle Yy of the cusps of the ring-fan waves, which exist

if 1/4 < 7, corresponds to the root o of equation (5.53) that is located
within the region —k; < a < a4, in |i .

Limits 7 =0 and 7 —

In the special case 7 = 0, equation yields the roots o' = :I:m.
Expressions (5.48) then yield £ = 3/2, 8V = v/3/2, tany = +1/v/2 and
tany* = £1///8, in agreement with expressions , , and (4.16b))
obtained in chapter 4 for ship waves in calm deep water. Thus, the cusp

angles 97, and %, of the inner and outer V waves are identical to the
Kelvin angle % in the limit 7 — 0, i.e. one has

v — K and ¥iy, =YX as 0. (5.54)
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Figure 5.18: This figure depicts the Strouhal-scaled values of a® that are
associated with the regions where ring waves, inner and outer V waves,
partial-ring waves, and outer and inner fan waves exist.

Equation yields the root
(@ +1)2~V3 /1 as T — 0.
This asymptotic approximation and expressions and yield
a¥= -1, B5=v2, k¥ =5V3, p s 0as 17— 00, (5.55b)

Thus, the cusp angles 1, and 1/1;‘f of the inner V waves and the ring-fan
waves vanish in the limit 7 — oo, i.e. one has

(5.55a)

Yiy —0and ¢, — 0 as 7 — 00 (5.56)
No waves ahead of a ship if 7 > /2/27 =~ 0.272
Expression (|5.48b|) shows that one has x,, = 0 if
2"+ 7)3=av. (5.57)

This relation and the inflection-point condition (5.53a)) are satisfied if

T =1/2/27~0.272 and o =1/2. (5.58)
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Figure 5.19: These figures depict the wavelengths A\%/*(7) and A\f°"¢(7) of
the ring waves aft or fore of a ship that steadily advances through regular
waves at 7 < 1/4, and also depict the wavelength AZ{}(T) of the transverse
outer V waves aft of the ship and the corresponding wavelength AJ{7 (1) at

the cusps for 7 < 1/4. Moreover, the figures depict the wavelength )\%t(r)
of the transverse inner V waves aft of the ship and the wavelength A\j{;*(7)
at the cusps of the pattern of inner V waves, which exist for 0 < 7. Finally,
the figures depict the wavelength )\?f t(T) of the transverse ring-fan waves
aft of the ship and the corresponding wavelength A\7:*’(7) at the cusps
of the pattern of ring-fan waves for 1/4 < 7. The top, middle, bottom
figures depict frequency-scaled wavenumbers \* = Aw?/V;, speed-scaled
wavenumbers AV = A g/V.? or Strouhal-scaled wavenumbers A% = Aw/V,2.
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The foregoing analysis shows that a ship that advances through regular
waves does not create waves ahead of the ship if 7 > /2/27 = 0.272, as

can be observed in Figs and [5.15].

Special case 7 =1/4

The relations (5.57) and (5.535]) are also satisfied if
r=1/4 and o®=1.

However, Figs[5.12] and [5.14] show that waves exist ahead of a ship in this
case, for which one has both z,, = 0 and y,, = 0 in (5.48b)).

In the special case 7 = 1/4, the quartic equation has two roots
aV'=—7/4 and v = 1/4. The root o = —7/4 corresponds to the cusps of
the inner V waves for 7 = 0.25, and the root o = 1/4 corresponds to the
cusps of the outer V waves for 7 = 0.257 or the cusps of the ring-fan waves
for 7 = 0.25". One then has

F?afy, =7/4 and F?a$y, =1/4=F?aj; if 7=1/4 (5.59)

in (5.49), (5.50) and (5.51)). Expressions (5.59) and (5.48a)) then yield
(afy, By ki) = (=7,4v2,9) f/F and (5.60a)
(agy, Bovikov) = (1,0,1) f/F = (azy, By, ki) (5.60b)

in the special case 7 =1/4. Expressions (5.60a) and (5.48b)) show that the
cusp angle v}, of the inner V waves is given by

Vi, = arctan(v/2/5) ~ 15°48" if 7 =1/4 . (5.61)

The numerator and the denominator of expression (5.48b)) both vanish
if 7 =1/4 and oV =1/4. Expression (5.53b) yields

(1672 —1)A* =3 — 8A + 6A4% — A* where 2A=a"+1.
This equation shows that one has A =1 if 7 =1/4 and
Anl— (47 =1)Y3/2Y3 as 7 5 1/4
as can be verified via substitution. One then has
a¥~1-22B3Ur —1)Y3 as 1> 1/4 . (5.62)

Thus, one has a®— 1 F 0 as 7 — 1/4 4+ 0. The asymptotic approximation

(5.62) and expression (5.48b)) finally yield tant* — F/2 as 7 — 1/4 £ 0.

One then has
tan’, = V2 and ¥}, ~ 54°44' if 7 =1/4 (5.63a)
tanw:f = —v2 and w:f ~125°16" if T=1/4. (5.63b)
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Moreover, one has

PR~ 19°28' < o, <54°44" as 0 <7< 1/4, (5.64a)
125°16" > 4pyp >0 as 1/4 <7 < o0 (5.64b)
Thus, the angle 9%, of the wedge that contains the outer V waves increases
as 7 increases within the range 0 < 7 < 1/4 for which outer V waves exist,

and the angle 9, of the wedge that contains the ring-fan waves decreases
as 7 increases within the range 1/4 < 7 for which these waves exist.

Cusp angles for all values of 0 < 7

The roots of the quartic equation (5.53) are given by

av<\/1+c:|:\/2c+ (120)2+4872)/27
where ¢ = (1672 —1)1/3 [(1+47)1/3+ 1- 47)1/3} /2. (5.65)

In the special case 7 = 1/4, one has ¢ = 0 and the roots (5.65)) become
aV= —7/4 and ¥ =1/4 in accordance with (5.59). The wavenumbers a,

agy and ag, in , and are then given by

27205, =\/2 — c+y/(1— 202+ 872 +vTFc+27 i 0< 7, (5.66a)

2F%aS,, :\/2—c+\/(1—20)2+487'2—\/1—|—c— 27 if 7<1/4,
(5.66b)

2 F%a¢, :\/27c+\/(1720)2+487'27\/1+0727 if 1/4<7. (5.66c)

The corresponding wavenumbers F2k = (F2a + 7)? are then given by

2FRG =2 —c+y/(— 202+ B2 +VIFcif 0<r,  (5.67a)
2F\/kS, :\/2—c+\/(1—2c)2+4872 —V1+cif 7<1/4, (5.67b)

2F, k¢ :\/2—c+\/(1—20)2+48T2—\/1+c if 1/4<71.  (5.67c)

These expressions yield F?kf;, = 9/4 and F?kSy, = 1/4 = F?k{; in the
special case 7 =1/4, in agreement with (5.60]).

The cusp angles ¥}y, (7), ¥4, (1) and 97:(7) of the inner V waves, the
outer V waves or the ring-fan waves determined by expressions (|5.48b]) and

(5.65) are depicted in Figi5.17, where the angle ¢} (1) of the fan waves

defined by expression (|5.52a) is also shown.
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Fig depicts the functions a(7) associated with the values of
a=(=ajy,—ky, =k ki kS agy gy, aio) (5.68)

that determine the boundaries of the regions where inner V waves, outer V
waves, partial-ring waves, outer fan waves and inner fan waves created by
a ship that steadily advances through deep-water regular waves exist.

Basic wavelengths

kgy and ki, given by (5.67) and the four wavenumbers kE and kI are im-
portant reference wavelengths for the waves created by a ship that advances
through regular waves.

The wavelengths A = 27 /k that correspond to the three wavenumbers kg,
h

The wavelengths A2/t = 27 /k; and A/°"¢ = 27 /k] are the wavelengths
of the longest or shortest waves along the path of a ship, aft or fore of the
ship, in the set of ring waves created if 0 < 7 < 1/4.

The wavelength )\‘;{7 = 2w/k, corresponds to the longest transverse

waves in the set of inner V waves created aft of a ship (for every value of
7) and ;P = 27/k§, is the wavelength at the cusps ¢* = £¢7, of the
pattern of inner V waves.

Similarly, )\i{} = 27/k} is the wavelength of the longest transverse waves

in the set of outer V waves created aft of a ship in the regime 0 < 7 < 1/4
and XJyP = 27/kS, is the wavelength at the cusps ¢* = £ 4%, of the
pattern of outer V waves.

Finally, )\%t = 27/k; is the wavelength of the longest transverse waves,
aft of the ship, in the set of ring-fan waves that exist in the regime 1/4 < 7
and A" = 27/kg; is the wavelength at the cusps ¢* = £ ¢ of the ring-
fan waves.

The wavelengths
XeTt (), MEme(m), A7), X (1), Al (7)), Xy (1), A (), X (7)
are depicted in Figl5.19 where the alternative scalings
Aw? v_ A _Ag A Aw

W=fa=— W= = =
f el S T

_ S _
=SEep o VT

are used.

Inconsequential short waves

The divergent inner and outer V waves associated with the regions

—o<a< —afy or aby <a< oo (5.69a)
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in (5.49a) or (5.50b) contain short waves that may be influenced by non-
linearities or surface tension, and thus are unrealistic, or are too short to
have a significant influence on flow features (hydrodynamic coefficients, ship
motions and wave loads) of practical interest and are then inconsequential.
These inconsequential or unrealistic short waves correspond to subregions

—o<a<—a}y or afy <a<oo (5.69b)
of the regions (5.69a). The dispersion relation (5.48a)) determines the
wavenumbers that correspond to o = —a3}, and a = a5y, as

F2ESy = (—F?a%y +7)% and F?ESy = (F2aSy, +17)2 . (5.70a)

Divergent waves that are significantly shorter than the waves at the cusps
of the inner and outer V waves are eliminated if the wavenumbers k3, and

oo, defined by (5.70a)) are chosen as
o =Ck$, and kX, = Ckgy, (5.70b)

where k§;, and k¢, are the wavenumbers of the waves at the cusps of the
inner or outer V waves and 1 < C denotes a proportionality factor. Expres-

sions ((5.70) yield

Fa%y, = M—H’ and F?aly, = M_ T (5.71a)

These expressions and expressions ([5.66al) and (5.66b)) yield the ranges

—ay <a<—afy or aby <a<aly (5.71b)

where divergent inner and outer V waves are meaningful. The choice C = 10
eliminates divergent waves that are 10 times shorter than the waves at the
cusps * = ¢, and ¥* = £, of the inner or outer V waves.

Similarly, the range

agy < < agy where F?a} = /CF2kS — 7 (5.72)

and C = 10 eliminates inner fan waves that are 10 times shorter than the
waves at the cusps ¢* = £, of the ring-fan waves.
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PART 2a:

Green functions and
boundary-integral flow
representations
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Chapter 6

Basics of Green functions
and boundary-integral
flow representations

Chapters 2-5 consider far-field (free) waves and wave patterns for general
dispersion relations (in chapters 2 and 3) and for three specific dispersion
relations associated with diffraction-radiation of regular waves by offshore
structures in water of uniform finite depth (chapters 2 and 3) and waves
created by a ship that steadily advances in deep calm water (chapter 4)
or through regular waves (chapter 5). Near-field flows around ships and
offshore structures, determined by the near-field boundary-value problem
stated in chapter 1, are considered hereafter in the book.

The boundary-value problem can easily be solved, via the method
of Fourier transformation, to determine the flow created by a distribution of
pressure pf'(¢,m) and/or flux ¢%'(¢, 1) applied at the free surface plane ¢ = 0
if no ship or offshore structure is present and the body boundary condition
is therefore irrelevant. The method of Fourier transformation can
also be applied for a vessel modeled via a distribution of sources (or dipoles)
over a plane, as was done by Michell in 1898 in his classical theory of the
wave drag of a ship that steadily advances in calm water [6,1]. Analytical
solutions to the boundary-value problem can also be obtained for
simple special body geometries. In particular, analytical solutions exist for
diffraction-radiation of regular waves by a circular cylinder, a sphere and
an ellipsoid. Analytical solutions have also been obtained for flows around
submerged spheroids that steadily advance in calm water or through regular
waves [6,2].
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However, these analytical methods cannot be applied to general body
shapes. A method of solution that is useful for bodies of arbitrary shape,
required for practical applications, is expounded hereafter. This general
method of solution, invented by Green in 1828 [6,3], is known as the Green-
function and boundary-integral method or, more precisely, as the method
of Green function and boundary-integral representation. Green’s method is
introduced in this chapter, and is applied in chapters 7-9 to the boundary-

value problem ([1.37)).

6.1 Basic mathematical identities

Green functions are associated with a classical identity, due to Green, that is
related to the fundamental ‘divergence theorem’. These two basic identities
are now considered.

The divergence theorem
| 4@V Vi€) = [ da(&) m(e) V() where Ve = (06.0,.00) (6.1)

states that the flux m -V of a differentiable vector field V = (V& V"7, V¢)
through a surface ¥ that encloses a finite three-dimensional region D is equal
to the integral of the divergence Vg -V of the vector V over the region D

inside the boundary surface . The unit vector m = (m$, m”, m¢) normal
to the boundary surface ¥ points outside the region D, and dv(£€) and da(&)
denote the differential elements of volume or area at points £ €D or £€X.

Green’s classical identity is obtained if the divergence theorem (6.1) is
applied to the particular vector field

V(E) = p(8) Vew (&) — (&) Ve o(&) (6.2)

where (&) and ¢ (§) are differentiable scalar functions of £ € (DUZX). The
relations (6.1) and (6.2)) yield

[av(o¥o—uVEe) = [dam (¢ Vgu—vVee)  (63)
D )
where V2 = Ve Ve = 9 + 07 4 07 is the Laplacian operator.

The functions ¢ and ¥ in Green’s identity (6.3)) are general differentiable
functions. The special case when the function ¢ satisfies Laplace’s equation

vngo for £€D (6.4)

is considered hereafter. In this special case, Green’s identity (6.3)) becomes
/degovng/zdam-(goVEw—wV‘sgp). (6.5)
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An important identity is obtained if the function (&) in is chosen
as a function that is singular, in the particular way defined further on, at a
point £ =x. To this end, a short mathematical detour is necessary to briefly
consider a useful special function, called the Dirac ‘delta’ function.

6.2 The Dirac delta function

Functions are ordinarily defined via a ‘point-wise relation’ in which function
values 7 = f(§) are associated with corresponding values of . This ordinary
definition of a function, based on a £ — n = f() relation, is useful even for
a function f(§) that is unbounded at a singular value z of £ if the singularity

of f(€) at € = x is specified, e.g. if f(§) ~1/\/E—z or f(£) ~1/(£ — )%

However, this ordinary definition of a function is less useful for a more
general indeterminate singularity, as is the case for the delta function § (§—=x)
now considered. An alternative framework based on a class of functions,
called generalized functions [6,4], can be used to define singular functions
like § (§—x). A generalized function is defined in an ‘integrated sense’, i.e. via
an integration process, rather than via a ‘point-wise relation’ £ — n = f(§)
as for ordinary functions.

Specifically, the singularity of the Dirac function ¢(§ — ) is defined via

the relation
Lbd§6<§x>f(£>{f%x)}if{ cersh } (6.6)

r<aorb<uz

where f(£) denotes an arbitrary continuous function.

The definition can be extended to higher dimensions. For a three-
dimensional region D bounded by a surface X, Dirac’s relation yields

f(x) xeD

/dv6<£—x>6<n—y>6<<—z>f<£>: 0 bifdx¢(DUS)} (6.7)
D £(x)/2 xey

where dv = d&dnd(, f(&) = f(&,n,¢) and f(x) = f(z,y, 2). The identity
(6.7) for the case when the point x is at the boundary surface ¥ of the
region D assumes that the surface ¥ is smooth at the point x.

In the special case f(&€) =1, the identities (6.7)) become

1 xeD
/dfdnd{ d(—xz)d(n—y)d(C—2)=¢ 0 »ifcx¢(DUX),. (6.8)
P 1/2 XEY

These important identities are used further on.
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6.3 Basic boundary-integral relations

The arbitrary function ¢ (&) in the relation (6.5)) is now taken as a function

that satisfies the Poisson equation
VEG(&x) =08(E—2)d(n—y)d(C—2) (6.9)

related to the Laplace equation (6.4). The Dirac relations (6.7) and Green’s
identity (6.5]) yield the three complementary relations

/da(gom-VEG—Gm-Végo) = p(x) if xeD, (6.10a)

b

/da(gom-VEG—Gm-Végo) = p(x)/2 if xeX, (6.10Db)
)

/da(¢m~VEG—Gm~V£<p):O if x¢(DUY) . (6.10¢)
)

The notation ¢ = p(x) is used further on for shortness.

Expression (6.10a)) explicitly determines the function ¢ = (x) at a
point x within the three-dimensional region D in terms of the values of the
function ¢ = (&) and its normal derivative m-Vg ¢ at the boundary surface

Y. This relation therefore provides a boundary-integral representation of the
function ¢ = ¢(x). The identity (6.10b)) only involves the function ¢ and
its normal derivative m - Vg at the surface X, and therefore provides a

boundary-integral equation that determines ¢ at ¥ if m - Vﬁga is specified
(known) at the boundary surface X.

The boundary-integral relations (6.10a]) and (6.10b|) yield a space reduc-
tion from a three-dimensional region D to the two-dimensional boundary
surface ¥ that encloses D. This

3D region D = 2D boundary surface ¥

reduction is made possible by the relation satisfied by the function
G, which is called a Green function. The boundary surface ¥ in Green’s
boundary-integral relations is general. The general relations
and the related Green function G can then be used to solve 3D boundary-
value problems for general geometries, notably for the hull surfaces 2 of
offshore structures and ships that are of primary interest in this book.
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6.4 Free-space and general Green functions

Free-space Green function

The divergence theorem 1' can be applied to the vector field VS G and the
region A inside an arbitrary boundary surface ¥. The divergence theorem

(6.1), the Poisson equation and the Dirac relations yield
da m-V G:/de v, Gz/duv%;
/z: 3 A £ A 3

{0} @i} (611)

The unit vector m normal to the surface X that encloses the region A points
outside A in (6.11). The identities (6.11)) show that the integral over the
surface ¥ of the normal flux m-Ve G is equal to 1 for every point x inside

the closed surface ¥, but is nil if x is outside X.

In particular, the arbitrary surface ¥ can be taken as a sphere centered
at x. If r is the radius of the sphere, its surface area is 47 r2. The identity
that involves the integral over the surface ¥ in then shows that the
flux of m~V£G = dG/dr through the surface ¥ of the sphere is given by

dG/dr =1/(4mr?) if G only depends on r. This relation yields
47 G(€,x) = —1/r where (6.12)
r=V(E—2)?+(n—y?2+((~2)? (6.13)
is the distance between the points € = (£,7,() and x = (z,y, 2).
The gradient of is
47rV€G:(f—ac,n—y,(—z)/r?’:(é—x)/r?’. (6.14)

It follows that 4w9%2G/9&? = 1/r3 — 3(& — 2)?/r®. Analogous expressions
for the derivatives 92G/dn? and 902G /9¢? show that G satisfies the Laplace
equation

ng:O if 0<r (6.15)
in agreement with .
Thus, the function (6.12) satisfies the 3D Poisson equation , ie.
—1/r
2 _ _ _ _
2 (S) == asn - - (6.16)

The Green function (6.12) is known by several names, including the free-
space or unbounded-space Green function, the fundamental singularity, and
the Rankine source potential.
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Physical interpretation

The function G = G(&,x) and its gradient VEG can be associated with a
flow potential and the corresponding flow velocity in an unbounded fluid.
Specifically, the Green function represents the velocity potential of
the flow created at a point & by a unit source located at a point x or,
alternatively, as the flow created at a point x by a unit source located at a
point €. Indeed, the fundamental Green function satisfies the Poisson
equation as well as the Poisson equation

ViG=(07+02402)G=0(x—&)d(y—mn)d(z—C) . (6.17)

It is shown further on that this symmetry between the points x and & and
the related definition of a flow-field point and a source point in G(&,x)
are not as obvious for more general Green functions, notably the Green
functions associated with the flow around a ship that steadily advances in
calm water or through regular waves of primary interest in the book.

The boundary-integral representations b) determine a harmonic
function ¢ = p(x) at a point x located inside a region D or at its boundary
surface ¥ in terms of a distribution of sources and dipoles, with densities
equal to the normal flux m-Vg ¢ or the function ¢, associated with a Green
function G and its normal derivative m'Vé G, respectively. Moreover, a
harmonic function ¢ = (x) is fully determined at every point x of the
finite region inside a closed boundary surface ¥ by means of the boundary-
integral representation if ¢ and its normal derivative m-Vgcp are
known at X.

General Green function

Expression (6.16)) shows that the general solution of is given by

47G = —1/r + H where VEZH:O for £€D. (6.18)

Thus, Green functions G(&,x) associated with the Laplace equation in the
three-dimensional space satisfy the Poisson equation and are given
by the sum of the fundamental singularity and a function H that is
harmonic (satisfies the Laplace equation) in D, or more generally in a larger
region that contains D.

Green functions are not unique because the harmonic function H in the
general solution can be chosen in alternative ways, as is illustrated
in the next section. However, every Green function associated with the
three-dimensional Laplace equation is of the form .

The basic boundary-integral representation (6.10a) and the relations
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6.10b) and (6.10c) have been applied, with the general Green function
6.18

, to numerous boundary-value problems in engineering and physics.

6.5 Alternative Green functions

Green’s fundamental relations (6.10]) are now considered for the boundary-
value problem that determines the velocity potential

P(&,t) =Rep(€) elc7 1! (6.19)

associated with the flow around a ship that advances at a constant speed
along a straight path through regular waves in water of finite uniform depth.

This boundary-value problem is stated by (1.36) and (1.37) where ¢(x) is
now replaced by ¢(€).

Boundary-value problem

Specifically, the spatial component ¢ (&) of the flow potential @ (£, t) satisfies
the Laplace equation

v§¢z(a§+a§+a§)¢:o in D (6.20a)

and the boundary conditions

@~ 0 at B, (6.20D)
dcp=0 at X5, (6.20c)
[0+ (FOe+if —€)?lo=Fpg +ifp"—¢" at 7, (6.20d)
n-Vep = ¢ at 2. (6.20¢)

One has € = +0 in the free-surface boundary condition where the
Froude number F and the non-dimensional (encounter) frequency f are
defined by . Moreover, every flow variable is non-dimensional as in
(1.32alb). The unit vector n normal to the hull surface X points outside
the ship (into the water). The hull flux ¢” in the boundary condition
(6.20¢) at the ship-hull surface X and the pressure p’ and the flux ¢ in
the boundary condition at the free surface £ are presumed known
in the general boundary-value problem .

The boundary surface ¥ in (6.10]) is given by
y=y*uxBuxfux? (6.21)

where ¥ is an infinitely large surface that encloses the flow region D, 8
is the part of the sea-bottom plane ( = —d that is inside ¥, and LF is
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e
m<—e ¥

m

Figure 6.1: Closed boundary surface ¥ = U X8 U ©FuU 2 associated
with the boundary-value problem that corresponds to the flow around a
ship that steadily advances through regular waves in water of uniform finite
depth. The unit vector m normal to the boundary surface X points outside
the flow region enclosed by Y. The unit vector n = —m normal to the hull
surface ¥ points outside the ship (into the water).

the part of the undisturbed free-surface plane ( = 0 that is inside X°° and
outside the mean wetted ship-hull surface ¥, as is shown in Fig.

Green functions G(&,x) associated with the Laplace equation in a three-
dimensional region D satisfy the Poisson equation , and are expressed
in as the sum of the fundamental free-space singularity and
a function H that satisfies the Laplace equation, i.e. is harmonic, in D.
As was already noted, the harmonic function H in the general expression
for the Green function G associated with the 3D Laplace equation is
not uniquely defined and indeed can largely be chosen at will. Thus, Green
functions are not uniquely defined and alternative Green functions can be
used, as is illustrated in the remainder of this section.

In particular, Green functions can be—and usually are—defined in a
region D¢ that is larger than the flow region D and contains D. Specifically,
the flow region D for the boundary-value problem is bounded by the
surface ¥ defined by 7 whereas the Green function G is usually defined
within the entire lower half space ¢ < 0 (in deep water), which includes the
flow region D as well as the region D; inside the ship-hull surface L.
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Far-field contribution

A particularly simple choice of the general harmonic function H in (6.18)) is
H = 0. The Green function that corresponds to this simplest choice is the

free-space Green function (6.12)). The Rankine source potential (6.12]) van-
6.20D))

ishes as r — o0o. This property and the far-field boundary condition (
ensure that the contribution of the far-field surface ¥°° in the boundary-
integral relations is negligible if ¥°° is sufficiently large. This result
holds for more general Green functions G, notably all the Green functions
considered in the book, as can be shown via an analysis of the behaviors of
G and the flow potential ¢ in the far-field limit » — oco.

Contribution of the sea bottom

The contribution of the sea-bottom surface X, where m = (0,0, —1) and

the boundary condition ([6.20c|) holds, in (6.10]) is given by
—/ d&dn ¢ 0cG where ( = —d .
»B

This contribution is nil if the harmonic function H is chosen so that the
Green function G satisfies the boundary condition
0cG=0at (=—-d. (6.22)

The boundary condition (6.22]) applied to the Green function G is identical
to the boundary condition (6.20c) satisfied by ¢.

The boundary condition (6.22)) is satisfied if H is chosen as

H = —1/rq where (6.23a)
ra=V(€—2)2+(n—y)>+ ((+2+2d)? (6.23b)
denotes the distance between the point & = (£,7,() and the mirror image

xt = (z,y,—2z—2d) of the point x = (z, y, z) with respect to the sea-bottom

plane (= —d. Expressions (6.18]) and (6.23al) yield
ArG=—-1/r—1/rq . (6.23c)

Thus, the contribution of the sea bottom X in (6.10) is eliminated via the
simple choice of Green function given by (6.23c]).

Contribution of the free surface in the special case F' =0

The contribution of the free surface X', where m = (0,0,1), in (6.10) is
given by

/EFdfdn (p 0cG—GOcyp) . (6.24a)
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The free-surface boundary condition is now considered in the special
case F' = 0 associated with diffraction-radiation of regular waves by an
offshore structure, and for the common case p = 0 and ¢! = 0. In this
particular case, the free-surface condition becomes

[0 — (f+ie)?]p =0 at XF. (6.24D)

The integrand of (6.24a)) is nil, and the contribution of the free surface X'
in ([6.10) is eliminated, if one chooses a Green function G that satisfies the
free-surface boundary condition

[0c— (f+1€)*)]G=0at (=0. (6.24c)

This boundary condition is identical to the free-surface condition (|6.24h))
satisfied by the flow potential ¢ .

Contribution of the free surface in the general case Ff # 0

The general case F'f # 0 associated with the free-surface boundary condition
(6.20d) is now considered in the common case p¥ = 0 and ¢ = 0. Thus,
the potential ¢ satisfies the condition

[0c + (if —e+ FOe)* o =0 at X (6.25a)

If one chooses a Green function G that satisfies the free-surface boundary
condition

[0+ (if —e—F0¢)?]G=0at (=0, (6.25b)
the contribution (6.24a)) of the free surface X" in (6.10) is given by

/EFdfan G —GOcyp)

= EFdfdn[QF(if—e)@g(G(p)+F285(G85@—@85G)] . (6.26)

Stokes’ theorem
/ dedn (9Q)9¢ — 0P /on) = / (Pdé + Qdn) (6.27)
R C

where P(£,n) and Q (&, n) are differentiable functions defined within a finite
region R inside a closed curve C in the two-dimensional space (£, 7), is now
applied to the free-surface integral . Specifically, the curve C in
is taken as the waterline I'>*°UT", where I'** and I" are the intersection curves
between the free surface and the far-field surface % or the ship-hull surface

»H | and the region R in (6.27) is the portion X" of the free surface inside
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I'> and outside I'. The waterlines ' and T' are oriented as in Fig[6.1].
Stokes’ theorem then yields

[ A€ 2P (1 =€) 06(G o) + 206 (G e — 9 0¢C)

:/Fdn[QF(if—e)Ggo—i-FQ(G@gcp—wagG)] (6.28)

where the contribution of the waterline I'>°, negligible for a sufficiently large
surface X°°, is ignored.

Expressions (6.26) and (6.28]) then yield
[ dcdnte 0.6 - Goce)
»F
:/dn[2F(if—e)ch—i—FQ(Gagw—apagG)]. (6.29)
r

The relation shows that the contribution of the free surface X is
not eliminated if F© # 0. However, the surface integral over the
unbounded free surface X is reduced to a line integral around the ship
waterline I'.

The sign difference between the term +F0¢ that appears in the free-
surface boundary condition satisfied by the potential ¢ (&) and the
term —F'0¢ in the free-surface boundary condition satisfied by the
Green function G(£,x) is essential in the transformation (6.29). This sign
difference is considered in section 6.8.

Contribution of the ship-hull surface

The contribution

da (¢ m-VgG—Gm-Vggo) (6.30a)
S H

of the ship-hull surface X in (6.10)) is now considered. The hull boundary
condition li specifies the flux n - Vg at Y where n = —m. The

contribution ((6.30al) then becomes

da G ¢* (6.30b)
SH

if a Green function that satisfies the boundary condition
n-VeG=0 at »H (6.30c)

is chosen. This homogeneous boundary condition corresponds to the non-
homogeneous boundary condition (6.20€)) satisfied by the potential ¢. The
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contribution of the ship-hull surface ¥ is then determined in terms
of the hull flux ¢, which is presumed to be known in the boundary-value
problem (6.20) , and the Green function G that satisfies the ship-hull surface
boundary condition (|6.30c]).

A Green function that satisfies the boundary condition at the sea
bottom ¢ = —d and the boundary condition at the free surface ( =0
can be applied to a general ship-hull surface 3. However, a Green function
that satisfies the hull boundary condition is associated with a specific
ship-hull surface £, and a different Green function is therefore required
for every ship. Furthermore, Green functions that satisfy the boundary
condition are complicated and difficult to determine, even for special
simple geometrical surfaces ¥ such as a sphere or an ellipsoid.

Green functions that satisfy the sea-bottom boundary condition ,
the free-surface boundary condition and the hull-surface boundary
condition are therefore not commonly used, and Green functions
that satisfy the sea-bottom boundary condition and the free-surface
boundary condition are mostly used in practice.

6.6 Rankine-Fourier decomposition

The harmonic function H in the general Green function (6.18) can easily
be chosen so that the sea-bottom boundary condition s satisfied ;
indeed, the harmonic function H is given by the simple image Rankine
source (6.23a)) . However, the function H in expression for the Green
function G(&,x) that satisfies the free-surface boundary condition
associated with a ship that steadily advances through regular waves in finite
water-depth is considerably more complicated than expression .

This Green function is now considered in the simpler special case of deep
water. The Green function G (£,x) satisfies the Poisson equation in
the lower half space ( < 0 and the far-field boundary condition G — 0 as
r — 00, in accordance with the far-field condition and the boundary
condition in the deep-water limit d = co. Thus, the Green function
G (€,x) is the solution of the boundary-value problem defined by the Poisson
equation

VEG:(?(ﬁfx)(;(n—y)é(sz) in (<0, (6.31a)
the far-field condition
G—0asr—oo, (6.31b)
and the free-surface boundary condition
[0c+ (if —e—F0)*]G=0 at (=0 (6.31c)

in accordance with (6.25b)).
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The general solution of the Poisson equation (6.31al) can be expressed as

47G = —1/r +1/r' + H"/n where (6.32)
= V(€ =22+ (n—y)*+ (( +2)? (6.33)

denotes the distance between the point & = (£,7,() and the mirror image
x' = (x,y,—z) of the point x = (z,y, 2z) with respect to the free-surface
plane ( = 0. The Rankine potential 1/7/ in satisfies the Laplace
equation (is harmonic) in the lower half space { < 0, in accordance with
(6.15), (6.16) and (6.31a)). The solution corresponds to the general

solution (6.18)) with the harmonic function H chosen as H = 1/r' + HF/r.
The function HY in (6.32)) satisfies the Laplace equation

ngF: 0in (<0 (6.34a)
and the boundary conditions

HF 50 as r — o0, (6.34Db)
[0c+ (if —e—F0e)?1H = =270, (1/r") at (=0 . (6.34c)

The boundary condition (6.34c)) follows from the boundary condition ([6.31c
and expressions ((6.32), (6.13]) and (6.33)).

Expression defines the Green function in terms of the basic free-
space singularity —1/r and two components that account for free-surface
effects. The component 1/7’ corresponds to the case when the boundary
condition at the free surface is simplified as G = 0, which corresponds to
the free-surface boundary condition in the limits f — oo or F'— oo
and effectively negligible gravity. The component H¥ in accounts for
free-surface effects and finite values of f and F' in the boundary condition
(6.31c). The solution HF of the boundary-value problem can be
obtained using a double Fourier transform with respect to the two horizontal
coordinates £ and 77, and can be expressed as a Fourier superposition of
elementary wave functions, as is shown further on.

6.7 Submerged source or free-surface flux

The Poisson equation and the free-surface boundary condition
(6.31c)) are associated with the flow created by a unit source located at
a point x = (z,y,z < 0) below the free-surface plane ¢ = 0. In the limit
z = 0, the Green function G (&, x) corresponds to the flow created by a unit
flux

" =06(&—=z)0(n—y)
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through the free-surface plane z = 0 at the point x = (z,y,z = 0), and the
Poisson (nonhomogeneous Laplace) equation (6.31a)) and the (homogeneous)
free-surface condition ([6.31c|) are replaced by the Laplace equation

VEQG =0in (<0 (6.35a)
and the nonhomogeneous free-surface boundary condition
[0+ (if —e—FOe)?1G=—-6(E—2)d(n—y) at (=0 . (6.35b)

Thus, the Green function G(&,x) represents the velocity potential of
the flow created by a unit source located at a point (z,y,z < 0) below the
free-surface plane z = 0, or a unit flux through the free surface at a point
(z,y,z = 0) of the free surface.

In the limit z = 0, expressions (6.13) and (6.33]) yield » = " and (6.32))

becomes
4nG =HY7 . (6.36)

The Laplace equation (6.35a]), the far-field condition (6.31bf) and the free-
6.35b

surface condition (6.35b)) then yield
vg H=0in ¢<0, (6.37a)
H"—0asr— o0, (6.37b)
[0+ (if —e—F0)*|H = —4n?5(¢ —2)d(n—y) at (=0. (6.37c)

The relations (6.37atb) and (6.34atb) are identical. The relations ([6.37c)
and (6.34¢)) are also identical, as is now shown. Expression (6.33)) yields

Ac(1)r") = —z/(h®+ 2% at ¢ =0 where h=+/( —x)2+ (n—y)2.

The function 0 (1/r') at ¢ = 0 is nil at z = 0 except if h = 0, i.e. at the
point (¢,n) = (z,y) where d¢(1/r") is unbounded. Moreover, one has

/dn/ d€ o (1)r') = 727rz/ dhh/(h?+22)%? =27 | ie.
o0 J—0 0

;T/_zn/_z,gac(l/r’)=1:/Zn5(n—y)/_265(£—$>

where the integral on the right side follows from Dirac’s relation and
the integral on the left side represents the flux through the free-surface
plane ¢ = 0 due to a unit sink located at (x,y,0). Thus, the function H¥’
determined by the boundary-value problem if z < 0 or the boundary-
value problem if z = 0, and the related Green function , are

consistent.
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6.8 Flow-field point and source point

The Laplace equation , the far-field condition and the free-
surface boundary condition that determine the harmonic function
HY suggest that this function can be expressed as a Fourier superposition
of elementary wave functions

ek (¢t tila(e—n)+B(n-v)]

as is verified further on. Thus, the harmonic function H¥ is a function of
the three coordinates £ —x, 7 —y and { + z. It follows that the free-surface
boundary condition (6.31¢c)) can be expressed in the form

[0.+(if —e+F0,)’]G=0at 2=0. (6.38)

The sign difference between the terms +F 9, in (6.38)) and —F 9¢ in (6.31c)
is evidently associated with differentiations with respect to the coordinates

of the flow-field point £ in (6.31d)) or the source point x in ([6.38)).

The boundary condition involves the term +Fd, in accordance
with the term +F0¢ in the free-surface boundary condition satisfied
by the flow potential ¢, instead of the term —F 0, that appears in (6.31c).
Indeed, the Poisson equation and the boundary conditions
and show that the velocity potential ¢ (x;&) of the flow created at
a flow-field point x by a unit source located at a point & below the free
surface z = 0 is determined by the boundary-value problem

(8932—1—85+6Z2)¢:6(:U—§)6(y—77)6(z—g“) in 2<0, (6.39a)
¢ —0 as r — oo and (6.39b)
[0, 4+ (if —e+F0,)*]¢=0at 2=0. (6.39c¢)

Thus, the Poisson equation and the free-surface boundary condition
(6.39¢|) are associated with the velocity potential of the flow created at a
point x by a unit source located at a point £ that steadily advances in the
direction of the positive = axis at a (nondimensional) speed F'.

In the special case F' = 0, i.e. for diffraction-radiation of regular waves
by an offshore structure, the Green function G(&,x) represents the velocity
potential of the flow created at a point £ by a unit source located at a point
x, as well as the velocity potential of the flow created at x by a unit source
located at &.

However, if F' 2 0, the Green function G represents the velocity potential
of the flow created at a point x by a unit source located at a point & that
advances in the direction of the positive x axis, or the velocity potential
of the flow created at a point & by a unit source located at a point x that
advances in the direction of the negative x axis. These alternative physical
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interpretations are easily understood in the particular case of a ship that
steadily advances in calm water along the x axis. In that special case, a
source at a point £ that advances in the direction of the positive x axis
creates waves behind the source, i.e. in the region = < £. Likewise, a source
at a point x that advances in the direction of the negative x axis creates
waves behind the source, i.e. in the region = < ¢.

The interpretation in which the Green function G(&,x) represents the
velocity potential of the flow created by a source at a point x = (z,y, 2 <0)
or by a flux through the free surface at a point x = (z,y,z = 0), and
the singularity point x advances at a nondimensional speed — F' along the x
axis, is the physical interpretation that is used in the definition of the Green
functions given in chapter 7 and in the formulation of boundary-integral
flow representations, based on Green’s basic identities , considered in
chapters 8 and 9. This interpretation is in accordance with the Poisson
equation and the free-surface boundary condition , which is
shown to be crucial in section 6.5.

6.9 Fourier transformation

Fourier transforms are now briefly defined because they are required in the
next chapter to determine the Green functions associated with the free-
surface boundary conditions relevant to the classes of flows considered in
the book. Fourier transforms also provide valuable basic insight into waves
created by a ship and their mathematical representation.

The Fourier transform f, («) of a function f(§) that vanishes as & — +o00
is defined in this book as

1 it —ix
fla) = = / dg e (E) (6.40a)

The inverse Fourier transform is given by
f(& = L /daeio‘gf () (6.40b)
N \/Tﬂ — 00 - ' '

The definition ((6.40a) shows that the Fourier transform of the derivative
/(&) =df(€)/d¢ of the function f(&) is

1 it —ia /
):Elife 5f(f)-

Integration by parts yields the classical simple rule

f(a) =iafia) . (6.40c)

fila
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Thus, the Fourier transform f/(«) of the derivative f’(§) of a function
f(§) that vanishes as £ — +oo is immediately obtained by multiplying
the Fourier transform f,(a) of the function f(§) by ia.

Fourier transformation can be defined in more than one dimension. In
particular, a double Fourier transformation with respect to two horizontal
coordinates —0o < & < 0o and —oo < 1 < oo is used further on. The double
Fourier transform f,(«, 8) of a function f(&,n) is defined as

flod) = oo [dn [ dg e fey . (oata)

The function f(£,7n) is related to its Fourier transform f.(a, 8) by means
of the inverse transformation

f(&n) = %/};B/ﬁa e (T B £ (a, B) . (6.41D)

The definitions (6.40al) and of the Fourier transform and the Dirac
delta function yield

5*(04;3;):\/%/_(15@_”55(5—@ \/ﬂe

Thus, the functions

(& —z) and e '*"/V27
are Fourier transforms. Similarly, (6.41a)) shows that the functions
S(6—x)6(n—y) and e~ (@=HBY) /(o) (6.42)

are Fourier transforms. This important result provides basic insight into the
far-field waves created by a near-field singularity such as a Green function.

6.10 Two related fundamental solutions

Two fundamental elementary solutions of the Laplace equation have already
been encountered. These basic solutions are

1/r=1//(€—2)2+ (n—y)2+ (( — 2)? with 0 <7 (6.43a)
and eFSHI@EHA) where k= +/a2+ 32 . (6.43b)

These two fundamental solutions, which correspond to the fundamental free-
space Green function (6.12) and an elementary wave function, are related
via the Fourier transformation defined in the previous section.
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The connection between the elementary solutions (6.43a)) and (6.43b)) can
be considered via the double Fourier transform of the fundamental Green
function . Moreover, this Fourier transform is used in chapter 7 to
determine the Green functions that satisfy the free-surface boundary con-
ditions associated with the classes of flows considered in the book. The
Fourier transform (1/7). can be determined by evaluating the integral

1 1 [ [° p—i(al+Bn)
() e
r), 2m)_J_ o T

in accordance with (6.41a]).

However, it is simpler to determine (1/7), by starting from the Poisson

equation (6.16)), i.e.
(0 +02+02)(1/r) = —4md(§—2)6(n—y) 5(C— 2) -
Expressions ((6.41a)), (6.40c)) and show that the double Fourier trans-

formation of this equation with respect to the two horizontal coordinates &
and n yields

d?(1/r). /dC2— k2 (1)r), = =2 e~ 1 @e BV (¢ 2) (6.44)
where k% = o2+ 2. One then has
d*(1/r)./d¢* = k*(1/r), =0 for (< z and 2z < ( .
The general solution of this differential equation is
(1/r) = ATekC 4 A=e k¢

where AT and A~ are unspecified. This general solution can be restricted
because the function 1/r and (consequently) its Fourier transform (1/7).
are even function of {(— z that vanish as (— z — +o00. The function (1/7).
is then given by

(1/r), = A e Flc—= (6.45)

where A is unspecified.

The function (1/r), defined by (6.45)) is continuous, equal to A, for (= z.
However, its derivative is discontinuous at (= z. Specifically, the derivative
d(1/r)./d( is given by

kAeF(¢=2) for (<2 or —kAe F %) for 2 < (.

It follows that one has

—kA for <=z+o} | (6.46)

d(l/T)*/dC_{ kA for (=2-0
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Integration of the differential equation (6.44) with respect to ¢ within the
range [z — 0, 2+ 0] yields

z4+0
[0/ fdC1 25— K[ dC ). =~z e,
z—0

This relation and expressions (6.46) yield —2kA = —2 e~ i(@ztBy) The
unspecified factor A in (6.45)) is then given by
A= e HaztBy) /L

This expression and expression (6.45)) finally yield

(1/r), = e~ Flz=Cl-ilas+By)/p (6.47a)
Expressions (6.41b) and (6.47a]) then yield the integral representation
1_1 ?ﬂ/z}ale*k\C*ZIH[&(E*IHB(nfy)] (6.47D)
r 2n)_ o J o K

of the free-space Green function 1/r. The changes of variables & — —a and

B — —p in (6.47h)) yield the equivalent expression
1_1 ?ﬁ/ﬁa L o —kie—cvilo@-o+8w-n1 (6.47¢)
oo — 0o k

o 2n _
The integral representation ([6.47b|) relates the two fundamental solutions
1/r and e~ Vo8 lz=¢l+ila(z=6+5(y—n)] (6.47d)

of the Laplace equation.

The solution 1/r associated with the fundamental Green function (6.12)
is well suited for representing near-field local flows. The other solution
corresponds to an elementary plane wave, and is well suited to represent

far-field waves. Expressions (6.47) show that the two complementary near-
field and far-field solutions (6.47d)) are related via Fourier transformation.

This property is analogous to the property (6.42)).

The notation

h=(z - &2+ (y —n)? (6.48)

is used hereafter.

The relations (6.47al) and (6.47¢c) can be generalized as
(1/V/h2+ ¢2), = e~ Flel=tlaz+8y) /p and (6.49a)

1 L e tila(e—€)+B(y—n)]
G o e o

_ L/C’flk/}y e Klel+ik[(a=€)cosr+(y=msina] (g 49¢)
2w 0 —T
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where c is real.

The particular choice ¢ = z + ( yields

1/r'), :ek(z+<)_i(aw+ﬂy>/k and (6.50a)
l dﬁ/ do = eFGEFO+ila(@—)+B(y—n)] (6.50D)
2w

where 7’ is defined by 1 as 1’ = \/h*+ (z + ¢)? with h given by | ,

and one has z <0 and ¢ <0.
The choice ¢ = z + ¢ + 2d in (6.49) yields

(l/rd) = k(e —iaa+By) /K ang (6.51a)
1 dﬁ/da ek GHC+2d) +ila(e—€)+B(y—n)] (6.51b)
Td 271'

where 74 is defined by (6.23b)) as ry = Vh2+ (z + (+2d)? with h given by
(6.48) , and one has —d < z < 0 and —d < ¢ < 0. Expressions (6.47)-(6.51])

are used in chapter 7.

6.11 Image singularities

The mirror image of the fundamental Rankine source —1/r in (6.12))-(6.13
with respect to the mean free-surface plane ( = 0 is used in expression (|6.32
for the Green function that satisfies the free-surface boundary condition
(6.31c). The distance r’ between the point & = (£,7,¢) and the mirror
image x’ = (z,y, —2) of the point x = (x,y, z) with respect to the plane

z =0 is given by (6.33).

An illustrative application of expressions ((6.47b) and (6.51b|) is now
given. For (< z, expression (6.47b|) yields

1 1 (o ] oo 1 .
L. ﬁ/dﬁ/da - ok (C—2)+ila(z—&+B(y—mn)] (6.52)

Expression (6.51b]) and (6.52]) then yield

1 1 1 [ r= ;
a<<r+r>: T/dﬁ/doz Al eila@=8+8Wu=m] where
d TJ) -0 J—c0

Ad = ok (C=2) _ —k(CHz+2d) _ ,—k(z+d) (ek<c+d> _ efk<<+d>)

=2sinh[k((+d)] e FE+D
This expression is nil for (= —d. The sea-bottom boundary condition
Oc(1/r+1/rg) =0 at (=—d (6.53)

is then satisfied, in agreement with (6.23c) and (6.22)).
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Chapter 7

Green functions associated
with flows due to ships or
offshore structures

This chapter considers the Green functions that satisfy the free-surface
boundary conditions associated with a ship that advances, in deep water,
at a constant speed through regular waves or in calm water. The Green
function that is appropriate for diffraction and radiation of regular waves
by an offshore structure or a moored ship (or other stationary bodies) is
also considered for deep water and in water of uniform finite depth.

7.1 Ship steadily advancing
through regular waves

The Green function G(£,x) that satisfies the free-surface condition
associated with a ship that steadily advances through regular waves is now
considered for deep water. This Green function is given by where
the harmonic function H* is defined by the boundary-value problem .
Thus, the function H satisfies the Laplace equation

(0F+02+02)H"=0in (<0 (7.1a)
and the boundary conditions
HY -0 as r — 0o and (7.1b)

[0¢ + (if —e—FO¢)* | H = =27 0:(1/r") at (=0 . (7.1c)
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This boundary-value problem is solved via double Fourier transformation
with respect to the two horizontal coordinates £ and 7. Specifically, the
Fourier transform HE («, 8,(;x) of the function HF(¢,7,(;x) is

1 oo oo .
HE(0.B.Cix) = 5 [ dn [ de e i ey Gox) - (720)

and the function H*" is related to its Fourier transform HI via the inverse
Fourier transform

HY(&,n,¢x) = ;T/_Zﬁ/Za el gF (o, B, (:x) (7.2b)

in accordance with (6.41)).

Expression (6.40d), the identity k% = o?+ 32, and the Fourier transform
(6.50a]) of 1/r" show that Fourier transformation of the Laplace equation

(7.1a)) and the boundary conditions ([7.1b|) and (7.1c]) yields

d*HE/d¢?— K*HF =0 in —c0< (<0, (7.3a)
HF -0 as (— —o0 and (7.3b)
dHE/d¢— [(f—Fa)®+2ie(f—Fa)— ] HE

= —2rekzilaztBy) ot =0 . (7.3¢)

The general solution of the differential equation ((7.3a)) is
HF = AT R 4 4 ook

where AT and A~ are unspecified. The boundary condition ((7.3b]) implies
A~ =0.

The boundary condition then yields the solution
HE =2x ek(cH2)—ilaetBy) (A L ie Af— €?) (7.4a)
where the functions A and Ay are defined as
A= (f—Fa)’—k and Ay =2(f—Fa) with k= /o242 . (7.4b)
The inverse Fourier transform of the function is given by

- o; o; ek (C+2)+ila(é—2)+B(n—y)] 74
_/_Ooﬂ/_ooa A+4ieAp—¢? ' (7.4c)

The changes of variables @« — —a and 8 — —f in the double Fourier
integral (|7.4c) yield the equivalent expression

- o;; O; ek (z+O+ila(@—&)+B8(y—n)] 75
_/_ooﬁ/_ooa AtieAp—e (7:52)
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where the dispersion functions A and Ay are now defined as

A= (f+Fa)*>~k and Ay =2(f+Fa) with k=+/a2+32. (7.5b)

These dispersion functions agree with the dispersion function A associated
with the analysis, considered in chapters 2 and 5, of free waves created by
a ship that advances through regular waves in deep water.

Expressions , where €2 in the denominator of the double Fourier
integral is inconsequential and can be ignored, and expression
show that the Green function G(&€,x) associated with a ship that steadily
advances through regular waves in deep water can finally be expressed as

471G =GR+ GF where GR= —1/r +1/1' ie. (7.6a)

R fl/w +1/y/h2+ (2 +¢)? and (7.6b)
ek(z+O+ila(z—8)+B(y—n)]

/d (F+Fa)2/k—1+2ie(f+Fa)/k (7.6c)

with (oz,ﬂ) =k (cos~,sin7y) . (7.6d)

Moreover, h in (|7.6b) is given by (6.48)). Expression (7.6c|) shows that the
Fourier component G in the basic Rankine-Fourier decomposition ((7.6al)

of GG is given by a Fourier superposition of elementary wave functions.

7.2 Nonuniqueness of decomposition into
Rankine and Fourier components

The Rankine-Fourier decomposition ((7.6) is not unique. In particular, the
Fourier representations (6.47¢) and (6.50b)) of the Rankine components 1/r
and 1/r" can be used to express G as

d/g/da, [e—ku—c\ _ek(erC)}el[a(x—f)+6(y—n)] .
(oo} — 00 k

This Fourier representation of the Rankine component G can be combined

with expression (7.6c]) for the Fourier component G¥. Thus, the Green func-
tion G defined by (7.6]) can be expressed as

417G = l/oc(lj,@/occl)a A* AS etlate” ).+B(y ") where (7.7a)
T oo J_ A+iecAy

AP A = RO % (e omble=s1] e,

A* =e** and Aczekq—l—%[ekc—e_kg] ifz< (¢ or (7.7b)

Az:ekz—l—%[e’”—e*kz} and AS =e*Cif¢ < 2. (7.7¢)
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The representation ([7.7) of the Green function G' does not involve Rankine
singularities and expresses G as a double Fourier integral. The different

expressions (7.7b]) and (7.7d) for the functions A* and A€ in (7.7a)) are cum-

bersome, and the representation ([7.7)) is not useful for practical applications.

Inversely, the general expressions associated with the Fourier
transform of a Rankine source can be applied to extract Rankine sources
from the Fourier integral representation of the component G¥, notably for
the useful purpose of ensuring that the amplitude function A*A¢ in the
Fourier integral vanishes rapidly in the limits £ — 0 and k£ — oo.
Thus, the general relation can be applied to define alternative and
optimal Rankine-Fourier decompositions of Green functions. [7,1]

7.3 Ship steadily advancing
in deep calm water

In the special case f = 0, i.e. for steady flow around a ship that advances
at a constant speed in calm deep water, expressions (7.6]) yield

e y p ek(z+O+ila(@—&)+8(y—n)] .
- - . .8
i + 7 / 5/ T F2a?—k+2icFa (78)

This representation of the Green function expresses G in terms of the free-
space Rankine sources 1/r and 1/’ and a double Fourier superposition
of elementary wave functions. Alternative Rankine-Fourier decompositions
can be obtained via the Fourier representation that expresses the
Rankine source 1/r’ as a Fourier superposition of elementary wave functions,
in the manner now explained.

Alternative Rankine-Fourier decompositions

Thus, alternative forms of ([7.8)) are now considered. Expression ((6.50b|) can
be used to express (|7.8]) in the two alternative forms

o0 F2a2—|—l<: e+ +ila(z—8)+B(y—n)]
AnG=— .
nG= /dﬁ/ F202— k1 2icFa (7.92)
e <[ Fz 2 k(z+()+ila(z—€)+B(y—n)] .
i _7_*+ / 5/ F202—k +2ieFa (7.9b)

where the inconsequential term 21ie Fa is ignored in the numerators of the
Fourier integrals.
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Limits £k - 0 and k£ — o
The integrands of the double Fourier integrals in the three alternative rep-
resentations and involve the functions
At =1, A=(F*a?/k+1)/2 or A~ = F?d%/k . (7.10a)
In the small-wavenumber limit £ — 0, these expressions yield
At~1, A~1/2 , A7 ~0 . (7.10Db)

The asymptotic approximations ([7.10b)) show that the double Fourier inte-
gral in the representation ([7.9b)) is preferable to the corresponding Fourier

integrals in the representations (|7.8) and (7.9a)) in the limit £ — 0. In the

large-wavenumber limit & — 0o, expressions (| ) yield
At~1 202 At~1 9 o
A~F2a2/(2k)p if 1 < or ¢A~1/25% if < 1. (7.10c)

A=~ F20?/k A <1
The asymptotic approximations ((7.10c)) show that the functions A and A~
are O(k) as k — oo if @ # 0, and that the double Fourier integral in the

representation (|7.8) is preferable to the corresponding Fourier integrals in

the representations ([7.9) in the limit ¥ — oo, except in the special case
F2a?/k < 1 for which (7.9b)) is best.

Thus, the representations and are best suited in the limits
k — oo or k — 0, respectively. This conclusion, based on the behavior of
the double Fourier integrals in the alternative expressions and in
the limits k¥ — oo or £ — 0, can also be justified by considering the near-
field and far-field behaviors of the free-surface boundary condition
in the special case f = 0 now considered. This complementary ‘physical-
space’ analysis of the alternative representations and is given
in section 7.7.

Optimal Rankine-Fourier decomposition

The foregoing analysis suggests the consideration of the representation
ArG=—1/r+1/r —2/rF + H/x (7.11)
where 7' = \/h2+ (z + ( — F2)2 (7.12)

is the distance between the points & and x!" = (z,y, —z + F?). Expressions

(7.12) and (6.33) yield

-1 1 2 -1 1 r!

T+;_T7FNT+pasﬁ—>O, (7.13&)
-1 1 2 -1 1 7’
7+;_TTN7_PaSﬁ_>OO' (7.13Db)



Expression (6.49b|) with ¢ = z + ¢ — F? yields

9 L[ % hc—F) tila(o—€)+B(y—n)]

This relation and expression (7.8) show that the representation ([7.11) is
given by

AnG = —1/r+1/r" —2/rF

1 (Zlo leo pekEtOtilale—O+8y—mn)] o
—&-;/_OOB/_OOaa F202—k+2ieFa (7.152)
where of’ =1+ (F2a2/k—1)e*F2k. (7.15Db)

One has af' =1 at the dispersion curves, defined by the equivalent relations
F?a?=k or F?k =1/cos?y, and

af ~F2k (1+cos®y) as k — 0 and af'~1ask— co. (7.15¢)

These asymptotic approximations show that the Fourier integral in
is similar to the Fourier integrals in or in the limits £ — 0
or k — oo, respectively, and the Rankine-Fourier decomposition associated
with expressions b) is then optimal in this respect.

The Green function that satisfies the free-surface boundary condition for
a ship that steadily advances in calm deep water is finally expressed as

47G =GR+ GF where GB= —1/r +1/1" —2/rF ie. (7.16a)
GR=—-1/\/R2+ (- 02+1/V/R2+ (2 + ()2 —-2//h2+ ( + (- F?2)?,
1 ™ [ ek(z+O+ila(z—&)+8(y—n)]
P F
_1 1
¢ w/_‘fr”/odk“ F2a2/k —1+2ieFa/k (7.16b)
with af =14 ¢ ¥ (F2a?/k —1) . (7.16¢)

Moreover, h in (7.16b)) is given by (6.48]).

7.4 Diffraction-radiation of regular waves
by offshore structures in deep water

In the special case of diffraction-radiation of time-harmonic waves by a
stationary body in deep water, expressions (7.6) with F' = 0 yield

AnC —1 1 1 E O;’lkk@k(2+4)+i[a(9ﬁ—€)+ﬂ(y—ﬁ)] .
i _7+?+?/_ﬂ/0 7kt 2icF - (717)

The representation (6.50b]) of the Rankine source 1/r" as a Fourier superpo-
sition of elementary wave functions can again be used to obtain alternative
Rankine-Fourier decompositions and an optimal decomposition.
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Alternative Rankine-Fourier decompositions

Expression ([6.50b)) can be used to express ([7.17]) in the alternative forms

f2+]<i ek(z-&-()-‘ﬂ[ a(z—=&)+B(y—mn)]
4 G—— dk 7.18
. = / R . (7.180)
e 1 - ek(z+) +ila(z—8)+B(y—n)] 18b
& —7‘*+ / —kt2icF (7.18b)

where the inconsequential term 2ieF' is ignored in the numerators of the
integrands of the Fourier integrals.

Limits k — oo and &k — 0

The double Fourier integrals in the alternative representations (7.17) and
(7.18atb) involve the functions

AT=k , A=(f>4+k)/2 or A== f?

These expressions yield

At~k AT —0
A~k/2% ask—o00 and {A— f%23 as k—0. (7.19)
A=~ f2 A= 2

The approximations ((7.19) show that the double Fourier integrals in the
representations (7.18b)) or (7.17) are preferable to the Fourier integrals in
the alternative representations in the limits £ — oo or k — 0, respectively.

This conclusion, based on the behavior of the double Fourier integrals in
the alternative expressions and in the limits k¥ — oo or k — 0,
can be further justified by considering the near-field and far-field behaviors
of the free-surface boundary condition in the special case F' = 0 now
considered. This complementary ‘physical-space’ analysis of the alternative
representations (7.17) and (7.18b) is given in section 7.7.

Optimal Rankine-Fourier decomposition

The foregoing analysis suggests the consideration of the representation

ArG=—1/r—1)r' +2/rf +H/x (7.20)
where 7/ = \/h2+ (z + ¢ — 1/f2)2 (7.21)
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is the distance between the points & and x/ = (z,y, —z+1/f?). Expressions

[21) and (6:33) yield

-1 1 2 —1 1
T_F TTNT_F as f27'/—>0 , (7.22&)
-1 1 2 -1 1
7_f+7wi+—asf27”/—>oo. (7.22]3)
r rorf r 7!
Expression (6.49b) with ¢ = z + ¢ — 1/f? yields
2 _ l/o(;ﬂ/o;a 1 ek (z+C=1/f) +ila(z =) +B(y—n)] (7.23)
rf TJ—-oo J—o0 k

Expressions (7.20)), (7.23]) and (7.18b) yield
4nG = —1)r —1/r' +2/rf

f2moee pekrOtifa@—O+6y—m)]
+? j;y/odk‘a Fh2icF (7.24a)
where af =1+ (k/fz—l)(fk/f2 . (7.24b)
One has a’" =1 at the dispersion circle k/f? =1, and
af'~1 as k/f?5 00 and af -0 as k/f2=0. (7.24¢)

These asymptotic approximations and the asymptotic approximations
show that the double Fourier integral in the representation ([7.24) is
similar to the corresponding Fourier integrals in the representations
or in the limits kK — oo or k — 0, respectively. The Rankine-Fourier
decomposition is in this respect optimal, and is used hereafter.

The Green function that satisfies the free-surface boundary condition
related to diffraction-radiation of regular waves by an offshore structure in
deep water is finally expressed as

47G =GR+ GF where GR= —1/r —1/r' +2/rf ie. (7.25a)
GF= 1 /RF = OF ~ 1\ FF G2+ OF +2//BF G2+ C 1P
L fmofo gk +ilalz—6)+8(y—m)]
F_ 1 kaf 2
¢ W/,ify/od “ 1-k/f2+2ie/f (7.25b)
with of = 14+ e *7(k/f2—1) . (7.25¢)

The double integral Fourier representation ([7.24]) can be expressed as a
single Fourier integral via the relation

1/

= [ dyeile@=O+8=ml =2 j (kh) (7.26)
where Jy(+) denotes the Bessel function of the first kind. One then obtains
the alternative expression

-1 1 2 < qFek(z+0) Jo(kh)
ArG = 2 = 2
TG roor Tt /Odk 1—k/f2+2i€/f

(7.27)

r
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7.5 Diffraction-radiation of regular waves by
offshore structures in finite water-depth

The Green function G(&,x) associated with diffraction-radiation of regular
waves by offshore structures in water of uniform depth d is now considered.
Equations and show that this Green function is the solution
of the boundary-value problem

£G—5(§ 2)é(n—y)d((—2) in —d< (<0, (7.28a)
9.G=0at (=—d , (7.28b)
[0c = (f+i€)’]G =0 at (=0, (7.28¢)
G—0as h=+({—x)>+ (n—y)? = o0 (7.284)

with —d < (<0and —d< z<0.

Basic Rankine-Fourier decomposition

The general solution of the Poisson equation ((7.28a)) is now expressed as
47G = G+ G where Gt = —1/r — 1/rg with (7.29a)
r=+vh2+ (z— ()2 and 1y = V/h2+ (2 +(+2d)? . (7.29D)

In (7.29)), r4 denotes the distance between the point € = (£,7,() and the
mirror image x? = (z,y, —2 — 2d) of the point x = (,v, ) with respect to
the sea-bottom plane z = —d as is shown in Fig. The function G (&, x)

in (7.29a)) satisfies the equations

EGf*O in —d<(¢<0, (7.30a)

;G =0 at (= — (7.30Db)

[0c — (f+ie€)? ]GF (3<— H(A)r+1/ry) at (=0 . (7.30¢)
Expressions ((6.47b]) and | m yield

1 +f 7/d/3/da k(z—<)+e—k<z+<+2d>} ila(z—&)+8(y—m)]

if 0 < (— z. This expression and the identity
ek (z=0) 4 o=k (z+¢H2d) {ek<z+d> n e—k(z+d>} e~ k(C+d)

=2cosh[k(z+d)] e FEFD yield
m(0¢ = f2)(1/r +1/ra) =

/dﬂ/da( )cosh[k:(erd)]ek(4+d)6i[04(x§)+B(yn)]
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ifo<(—=2.

The function

ar :/dﬁ/ dav A cosh[k (= + d)] cosh[k (¢ + d)] e} 12 (E=O+B(y=m)]

satisfies the Laplace equation ([7.30a)) and the boundary condition (7.30b)

at the sea bottom, and also satisfies the free-surface boundary condition

(7.30d) if
TA[f*— ktanh(kd) + 2ieF] cosh(kd) = (f¥/k)(1 +k/f?)/e*?
One then has

F  cosh[k(z+d)] cosh[k(C+d)]eile(z=+By=n)]
“ =z /dk cosh(kd) ekd[1— (k/f?)tanh(kd) + 2ie/f]

where af = 1+k/f* . (7.31)

Optimal Rankine-Fourier decomposition

The optimal deep-water Rankine-Fourier decomposition ([7.25)) is now ex-
tended to finite water-depth. Specifically, the Rankine-Fourier decomposi-

tion (|7.29a)) is modified as

471G =GR+ GF where (7.32a)
GF = —1/r —=1/ra—=1/r' = 1)1}, + 2/rf + 2/r] with (7.32D)

h2 4 (z + ()2 ,frd,\/m + (2 —C—2d)? (7.32¢)
=R+ (z+C=1/2)2 | vl =2+ (2 —¢—1/f2—2d)? (7.32d)

and r and 74 are given by (]7.29b|). In (7.32d)), 7’ is the distance between the
point & and the mirror image x' = (z,y, —z) of the point x with respect to
the free-surface plane ¢ = 0, and 7 is the distance between the point £ and
the mirror image x/, = (z,y,2 — 2d) of x’ with respect to the sea-bottom
plane ¢ = —d. Similarly in (7.32d)), r/ is the distance between the points &

and x7 = (z,y, —2 +1/f?) and rc{ is the distance between the point & and
the mirror image x£ = (z,y,2z —1/f?> — 2d) of x/ with respect to the sea
bottom z = —d. The flow-field point &, the source point x and the related

image points x4, x/, x/;, x/, Xf; are shown in Fig
Expressions and and the general expression yield
1/ +1/rh—2/rf - 2/Tdf =
1/025/020[ 1277 cosh[F(CHd)] evifate—e)4p00-m)]
TJ—oo

k ekd
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o xf = (z,y,—2+1/?)

v o X' = (2,y,—2) z2=0
= e X = (2,y,2) free surface

° 6 = (57777 C)
z=—d

S S/ SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
sea bottom

* X, = (x,y,2 — 2d)
. xﬁ: (z,y,2 —1/f? — 2d)

Figure 7.1: Flow-field point &, source point x and image source points X,
x/, xl), x7, XZ;.

This expression and expressions ([7.29a) and (7.31)) show that the Green
function associated with diffraction-radiation of regular waves by an offshore
structure in water of uniform finite depth is given by where the
Rankine component G® is given by (7.32bld) and (7.29b)), and the Fourier
component G can finally be expressed as

dk A7 AS eila(z =€) +B(y—n)] . .

/ 1— (k/f?)tanh(kd) + 2ie/f where (7.33a)

AC E2cosh[ (§+d)]/ekd and —
z k | cosh[k(z + d)] 1 e 1 )

A {14- f2] 2 cosh(kd) + 2 e 1 72 tanh(kd)|e

(7.33c)

In the deep-water limit d — oo, expressions ((7.33b)) and ([7.33c) yield

AS =e"¢ and A% = aflek” (7.34)
where a®" is defined by (7.25d). Expressions (7.32)) and (7.33)) for the Green
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function in finite water-depth d agree with the deep-water Green function
(7.25) in the limit d — oo as expected.

Expressions ((7.33b}c) for the amplitude function A*¢ = A A€ yield
A*C slask —ooif 24¢=0and A*°¢ 50as k-0, (7.35)

whereas the amplitude function

AZ<E|: k:]cosh[k(z+d)]cosh[k:((+d)]
b 12 cosh(kd)ekd

associated with the Fourier component Gf given by is unbounded
as k — oo if 24+ ¢ = 0 and is equal to 1 at £ = 0. The Rankine-Fourier
decomposition and ([7.33)) is then preferable to the basic Rankine-
Fourier decomposition ((7.29)) and and better suited to evaluate flows
due to distributions of singularities. Expressions c) yield A% = AZC
at the dispersion curve defined by the dispersion relation A = 0 where
A = f2— ktanh(kd).

Alternative representation of the Fourier component G

The function A*¢ = A*A¢ given by (7.33blc) can be expressed as

a k | coshlk(z+ ¢+ 2d)] + cosh[k(z— ()]
A% = [1+ fQ} 2ekd cosh(kd)

Jré 1 e ek(z+C+2d) 4 ok(2-Q)
Iz € o2kd

where A = f? — ktanh(kd). The Fourier component G in the expression
for the Green function associated with diffraction-radiation of regular waves
by offshore structures in finite water depth can then be expressed as

Tk AzC AZC) ila(z—&)+B8(y—mn)]
\AW / 1-— k?/f2)tanh(kd)+21€/f (736&)

/dk (AZS+A°) Jo(kh)

o 1—(k/f?)tanh(kd) +2ie/f

A = ﬁ cosh(kz%) LA A 17 /2] €
f2 2¢ekd cosh(kd) = f? e2kd

with 27 =2z + ¢+ 2d and zfzz—C. (7.36d)

The relation 1' was used in (|7.36b)). The functions Aic defined by
(7.36d) are functions of k /f2, f2d and f?2*, and (7.36)) expresses the Fourier

component G as the sum of two components G T and GF . The components

where (7.36b)

(7.36¢)
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GL are functions of the nondimensional water depth f2d, the horizontal
distance f2h = f2\/(z — €)%+ (y — n)? and the vertical distance f2z* or
f%2z~. Thus, G¥' is expressed as the sum of two components Gf and GF
that are functions of three variables, whereas the Fourier component G
defined by is a function of the four variables f2d, f2h, f2z and f2C.

7.6 Physical-space analysis

The alternative representations and of the deep-water Green
functions associated with the two particular cases f = 0 or F' = 0 express G
as the sum of a Rankine component defined in terms of elementary Rankine
sources and a Fourier component given by a double Fourier integral. The
Rankine components in these alternative representations are asymptotically
equivalent to the Green functions G or G~ defined as

4Gt =—1/r+1/r and 477G~ = —1/r —1/7 (7.37)
in the near field " — 0 or the far field ' — oo, as is shown in (7.13) and
722).

The Green functions G and G~ satisfy the boundary conditions
GT=0or 0G7/0(=0 at (=0 (7.38)

that correspond to the free-surface boundary condition (6.31d]) in the ‘zero-
gravity’ limit ¢ = 0, F' = 0o, f = oo or the ‘infinite-gravity’ limit g = oo,
F=0, f=0.

The limits £ — oo or k — 0 in the ‘Fourier-space analysis’ considered in
the previous sections correspond to the near-field or far-field limits 7/ — 0
or v — oo in a ‘physical-space analysis’ of the near-field and far-field ap-
proximations to the free-surface boundary condition. This complementary
physical-space analysis is now considered. [7,1]

Offshore structure in regular waves

In the case F = 0, the free-surface boundary condition (6.31¢c)) becomes
Ge—(f+ie?G=0at (=0 (7.39a)

where € can be taken as € = 0 in this ‘physical-space’ analysis. The Green

function G that satisfies the free-surface boundary condition (7.39a)) is a

function of the frequency-scaled variable xf = f?x. The behaviors of the
Green function G in the near-field limit f27' — 0 and in the far-field limit
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f2r'— oo are determined by the highest-order derivative G¢ or the lowest-
order derivative G in the free-surface condition ([7.39al). This analysis and
the boundary conditions ([7.38) then yield

G~G for f2r'<1 and G~ G* for 1 < f%r . (7.39h)

The alternative representations (|7.18b]) and (7.17) are then best suited in
the near-field or far-field limits f2r’ — 0 or f27’ — oo in the physical space,
and in the limits k — oo or £ — 0 in the Fourier space, respectively. The

optimal representation ([7.25)) is equivalent to the representations (|7.18b)
and ([7.17) in these limits in the physical and Fourier spaces.

Ship steadily advancing in calm water

In the case f = 0, the free-surface boundary condition ([6.31c)) becomes
Ge +F?Gee +2eFGe =0 at (=0 (7.40a)

where € can again be taken as € = 0. The Green function that satisfies the
free-surface boundary condition is a function of the speed-scaled
variable x = x/F?. The behaviors of the Green function G in the near-
field limit r'/F% — 0 and the far-field limit r'/F? — oo are determined by the
highest-order derivative G¢¢ or the lowest-order derivative G¢ of G in the
free-surface condition . This analysis and the boundary conditions

(7.38) then yield
G~ G* for P/F?< 1 and G~ G~ for 1 < 7//F?. (7.40b)

The alternative representations and are then best suited in the
near-field or far-field limits 7//F2 — 0 or r//F? — oo in the physical space,
and in the limits k — oo or £ — 0 in the Fourier space, respectively. The
optimal representation is equivalent to the representations and
in these limits in the physical and Fourier spaces.

Ship steadily advancing through regular waves

The free-surface boundary condition associated with the general
case F'f # 0 and a ship steadily advancing through regular waves is now
considered. The highest-order and lowest-order derivatives in are
G¢¢ and G. This consideration and then yield

G~G"asr"—0 andas 1’ — 0. (7.41)

The representation (|7.6) is then optimal in both the near-field and far-field
limits 7' — 0 and ' — oo in the physical space, and the limits & — 0 and
k — oo in the Fourier plane.
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7.7 Green functions for Ff # 0 and
the limits F'=0or f=0

The Rankine component

GR=—-1/\/h2+ (z = ()2 +1/\/hZ+ (2 + ()2 (7.42a)

in expression (|7.6b]) associated with a ship that advances through regular
waves does not agree with the Rankine components

1 2

R _ - 1 B
V(2= ()2 * N e (7.42b)
- = - 1 2 7.42c
VPEG—0F R+ GHCP | R -PP (7420

in expressions (7.16a)) or (7.25a) associated with the particular cases f =0

or F' = 0 and a ship that steadily advances in calm water or an offshore
structure in regular waves.

Modified Rankine component G?

The Rankine component (7.42af) can be modified to be consistent with the
Rankine components (|7.42bf) and (7.42c|) if f = 0 or F = 0. In particular,
the expression

GE = —1/r+1/r" —2/rF 4 2/r" where (7.43a

r= VBT 02, ¥ =/EF T 07, (7.43b

= VR G+ (- F2)2 o = B2 (2 1 (- F2—1/f2)7  (743c

yields GE~ —1/r4+1/r'—=2/rF as f >0, (7.43d
GR~ —1)r—1/r"+2/rf as F =0, (7.43e
G~ —1/r+1/r" as f— o0 or F— oo . (7.43t

The approximations ([7.43d)) and (7.43e]) are consistent with expressions
(7.42b) and (7.42c)), and the approximation (7.43f) is consistent with the

limits f — oo or F'— oo of the free-surface boundary conditions associated
with wave diffraction-radiation by offshore structures and flows around ships
steadily advancing in calm water or through regular waves.

Expressions (7.6) and (7.43a]) then show that the Green function that
satisfies the free-surface boundary condition for a ship that steadily advances
through regular waves can be expressed as

4nG =GR+ GF (7.44)
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where the Rankine component G¥ is given by (7.43alc) and the free-surface
component G is defined as

9 9 1 [ oo ek(z+§)+i[0¢($—5)+ﬂ(y—ﬂ)]
F_
=" __ = 4+ 2[4 d . A4
G F rFf+7T/_ooﬁ/_ooa A+ iely (7.45)

Expressions (6.49b)) and (7.43c) yield

—_k/f?
2 _ 2 _ i/ojﬂ/ﬁa L= e ™7 R kO tilate-6)+8u-m)]
m

k

This expression and expressions and (7.5b) yield

(o ek (+O+ila(z—£&)+8(y—n)] -
/ V/ (F+Fa)?/k—1+2ie(f+ Fa)/k (7.462)
where af' =1+ e 1" k(l—e_k/f V(f+Fa)*)/k —1]. (7.46b)

Expression ([7.46b) yields af = 1 at the dispersion curves defined by the
dispersion relation A = (f+ Fa)? —k = 0. Expression (7.46b) also yields

a2 as k—0 and
a" 51 as k—oo if F£0 or
a' ~f?/k as k = 0o if F=0 .

The Rankine-Fourier representation (7.44)), (7.43)), (7.46| is consistent
with the Rankine-Fourier representations (7.16) and (7.25)) in the special

cases f =0or F =0.

Decomposition of the Fourier component G

The dispersion function A defined by (7.5b|) yields

A+ieA;— = (f+Fkcosy+ie)? —k
= F?k%cos®y — k[1—2F(f +i€)cosy]|+ (f+ie)?. (7.47)

The classical representation of the quadratic function A2? — Bz + C as

B +vB2—-4A
Azx? =Bz +C=A(z—z")(x —27) where 2 = 5 A ¢
applied to (|7.47)) yields
A+ieAr—é*=(k—kF)(k— k) F?cos®y where (7.48)

k‘fz[ 2(f+ie)Feosy+£/1—4(f+ie)Fcosy|/(2F%cosy) .
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The relation (|7.48) finally yields
A+ieAr—é*=(k—kb)(k—kZ)F?cos’y (7.49a)

where k2 = kI and k! = k- are defined as

2
F2k° = [\/1/4— (f+ie)Fcos*y+1/2} /cos*y and (7.49b)

2
kijf2= (1+ie/f)? [\/1/4 erie)Fcos'erl/?} . (7.49¢)
In the limit € = 0, the functions k¢(vy) and k2(v) defined by (7.49b}c) become

E/f2=1/(\/1/4 —Tcosy +1/2)2=1/(5 +1/2)? (7.50a)
F2k° = (\/1/4 — Tcosy +1/2)?/cos®*y = (6 +1/2)?/ cos®y (7.50b)
where § = +/1/4 — 7cosy and Tcosy = (1/2+6)(1/2—4). (7.50¢)

Expressions (|7.50ath) agree with expressions (5.6|) for the dispersion curves
determined by the dispersion relation A = 0 associated with a ship that
steadily advances through regular waves.

One has

B ie F cosy
5(0+1/2)

This approximation and expressions ((7.49bfc) and (7.50)) then yield

[\/1/4—(f+ie)Fcos7+1/2]2:(5+1/2)2 [1 }+0(62).

kl=k'+ied'f+O(e*) and k2 = k°—ied°/F + O(¢?) (7.51a)
where 6°=1/[6(6 +1/2)] and §° = (6 +1/2)/(5cos?y) . (7.51Db)

Expressions (7.49a)) and (7.51a)) finally yield

1 1 1 1
A+ieA;  F2cos?y ko —ki \k—ko k—ki

1 1 1 (752)
26 \k—ko+iedo/F k—ki—iedif)’ '
where k¢, k°, 6%, 6° and § are given by (7.50) and (7.51D)).
Expressions (7.46a]) and (|7.52]) yield the decomposition

GF = GF + GE where (7.53a)
1 e oFk ek +ila@—6+8-n)
Gl =— dk : : 7.53b
§ / V1—471cosy ki—k+iedtf ( )
oFl kGO +ila@—6+B(y—m)]
/ . (7.53c)
_ \/1—47'003 k—ko+iedo/F
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The functions a’(k,7), k*(v) and k°(7) in this decomposition are given by

(7.46b) and (7.50alb). The relations (7.51b)) show that one has
0 < 6" and sign(6°) = sign(cos?y) . (7.53d)

Thus, the term §°f may be taken as 1 in (7.53b)), and °/F can be taken as
sign(cos7y) in (7.53c)). Expressions (7.53) provide a formal decomposition of

the function G into two components G and GE'. [7,2]

The component G¥* represents a flow that is scaled in terms of the length
g/w? and contains ring waves, associated with the dispersion curve I in the
inner region —k; < a < k;r in , and a related local flow. The flow
defined by the component G is scaled with respect to V.2/g and consists
of inner and outer V waves, associated with the two dispersion curves O~
and O* in the outer regions —oo < a < —k and k} < a < oo in (5.11).

7.8 Alternative representations
of Green functions

The Rankine-Fourier representations and of the Green functions
associated with a ship that steadily advances through regular waves or in
calm water, and the representations and of the Green
functions for an offshore structure in deep water or in finite water-depth
express these Green functions in terms of Rankine components GF that
involve elementary Rankine sources and Fourier components G¥ given by
double Fourier integrals, which are singular at the dispersion curves A = 0.

The Green functions defined by (7.6), (7.16]), (7.25) and (7.32)), (7.33)

have been extensively considered. In particular, alternative representations
of these Green functions in terms of single integrals exist. Near-field and
far-field analytical approximations also exist for the simplest cases, notably
in deep water and for F' =0 or f = 0. Alternative methods for evaluating
the Green functions defined in this chapter, including analytical methods
based on complementary analytical approximations and numerical methods
based on table interpolation or polynomial approximations within contigu-
ous regions, have also been developed.

The numerous single-integral representations, analytical approximations,
and numerical approximations that have been obtained for the particular
Green functions considered in this chapter for a ship that steadily advances
through regular waves [7,3] or in calm water [7,4] and for offshore struc-
tures in deep water [7,5] or in finite water-depth [7,6] are reported in a
vast literature. These analytical relations and numerical methods, applica-
ble to specific classes of Green functions, are not considered in the book.
Instead, chapters 10-12 expound an alternative general approach—called
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Fourier-Kochin method—in which the flow created by a general distribu-
tion of singularities, rather than a unit source, is directly evaluated. This
alternative method is applicable to a broad class of dispersive plane waves
associated with gemeral dispersion functions A and Aj.

7.9 Rankine component (G7)¢

The alternative boundary-integral representations of potential flow around
a ship or an offshore structure (body) given in chapters 8 and 9 include flow
representations that involve a distribution over the mean wetted waterline
of the body, i.e. the intersection curve between the body and the free-surface
plane ¢ = 0, of the functions

47 (9g,0,)GC = (96,0,) (G +(96,0,) (GT)¢ (1.54)

where G and GF' are the Rankine and Fourier components in the basic
Rankine-Fourier decomposition 47G = G® + G¥ defined in this chapter
and ¢ means integration with respect to . The contribution of the Fourier
component (GF)¢ to the velocity potential of the flow around a body can
be evaluated via the Fourier-Kochin method expounded in chapters 10-12.
The Rankine component (GF)¢ in is now considered.

Expressions ([7.43b)) and (6.48)) yield
r=+h*+ (2 —¢)? and v’ = \/h?2+ (2 + ()2 (7.55a)
where h = \/(z —&)24 (y —n)2 . (7.55D)

At the free-surface plane ¢ = 0, one then has
(=1/r)¢ = (1/r")¢ and (=1/r)¢ = (1/r")¢ .
It follows that one has
(=1/r =1/r")¢ =0 and (=1/r +1/7") = (2/r")¢ at (=0. (7.56a)
Moreover, one has
aC 1 1 / —
) S VU L O (7.56b)
asfr r=(C+z) |y—n
More generally, one has
a5 _
1 e Je=g where
8774 Te Tc_(<+c) y—n
re =+v/h?+((+¢)? and (+¢<0. (7.56¢)
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Expressions can be used in the boundary-integral flow representa-
tions given in chapters 8 and 9 for wave diffraction-radiation by an offshore
structure in deep water or in finite water-depth and for a ship that steadily
advances in calm water or through waves.
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Chapter 8

Boundary-integral flow
relations for an offshore
structure in regular waves

The method of Green function and boundary-integral flow representation
introduced in chapter 6 is now applied to diffraction-radiation of regular
waves by a large stationary body (offshore structure, moored ship) in water
of uniform finite depth. The body can be fixed (for wave diffraction) or
it can undergo small-amplitude oscillatory motions about a mean position
(for wave radiation). In the latter case, the flow around the body in its
mean position is considered, in accordance with the classical analysis of
diffraction-radiation of regular waves by stationary floating bodies, and as
is briefly explained in chapter 1. [1,6]

Green’s fundamental boundary-integral relation is applied to the
boundary-value problem and the Green function associated with the usual
and ‘obvious’ linear flow model, called ‘free-waterplane flow model’ in this
chapter, of wave diffraction-radiation by a stationary body. Green’s basic
identity is also applied to an alternative linear flow model that is
called ‘rigid-waterplane flow model’. Green’s identity applied to the classical
free-waterplane flow model in sections 8.1-8.3, and to the alternative rigid-
waterplane flow model in sections 8.4 and 8.5, are found to yield identical
boundary-integral flow representations. This flow representation is given by
(8.37), which is the main result of this chapter [8,1]. A notable feature of
the boundary-integral flow representation is that it is weakly singular,
and accordingly defines a flow potential that is continuous at the surface of
the body [8,2].
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8.1 General boundary-value problem and
basic free-waterplane linear flow model

The boundary-value problem associated with diffraction-radiation of regular
(time-harmonic) water waves of frequency w by a stationary rigid body such
as an offshore structure or a moored ship is defined in chapters 1 and 6.
This boundary-value problem is now restated for ease of reference. The
flow around the body is observed from a Cartesian system of coordinates,
denoted as & = (§,1,() or x = (z,y, 2). As in section 1.5, the coordinates
£ and x, the corresponding flow potentials

o =p(€) and ¢ = p(x) (8.1)

and all other flow variables are nondimensional in terms of a reference length
L,, commonly chosen as a characteristic dimension of the body, the accel-
eration of gravity g and (for the flow pressure) the water density p,, .

The flow potential associated with diffraction-radiation of regular waves,

with nondimensional frequency f defined by (1.34) as f = w+/L,/g, by a
stationary body is expressed as

P& 1) =Rep(e T =Rep(g)e” ! (8:22)
where f, = f+ie with e =+0 (8.2b)

in accordance with (6.19)). The corresponding (nondimensional) free-surface
elevation and dynamic flow pressure are defined by (1.39)) as

2(€m.t) =Re[if p(&,0,0) —p"(€,m)]e /" where £ € BF  (8.3a)
and py(€,t) =Reif(€)e ! where £€D . (8.3b)

The elevation of the free surface X" and the dynamic pressure in the flow
region D are then directly determined in terms of the flow potential ¢.

The classical free-waterplane linear flow model and the related boundary-
integral flow relations are associated with the 3D flow region D inside the
closed boundary surface

y=xBur~cuzfuxh (8.4)

defined in Fig. Specifically, ¥°° denotes an infinitely large surface, ©2
is the portion of the horizontal sea-bottom plane ( = —d that is inside X°°,
YH denotes the mean wetted body surface and X is the portion of the
plane ¢ = 0 of the undisturbed free surface that is outside X but inside
¥>°. The portion of the plane ¢ = 0 that is inside X7, called waterplane
hereafter, is denoted as X! and the intersection curve between the body
surface £ and the plane ¢ = 0 is denoted as I, as is shown in Fig. The
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Figure 8.1: Boundary surface ¥ = S8 U XU L UXH related to the basic
free waterplane boundary-value problem (8.5) for diffraction-radiation of
regular waves by an offshore structure in water of uniform finite depth.

unit vector m normal to the closed boundary surface ¥ points outside X
and the region D, as is shown in Fig[8.I] The unit vector n = —m normal
to the body surface X points outside the body.

As is stated in (1.36H1.37) and (6.20), the spacial component ¢ (&) of the
velocity potential (8.2a]) satisfies the Laplace equation

Vip=0ip+0jp+0ip=0inD, (8.5a)
the far-field condition
0 —0 as V2412 — o0 (8.5b)
applied at an infinitely large surface 3°°, the sea-bottom boundary condition
¢, =0 at £°, (8.5¢)
the free-surface boundary condition
o — fPo=1ifp"—q¢" at £F (8.5d)
and the body-surface boundary condition

n-Vep= ¢ at 2 (8.5€)
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The flux ¢*(¢) in is presumed to be known at every point € of
the mean wetted body surface ¥ in this chapter. In particular, the body-
surface flux ¢ that corresponds to the diffraction problem and the six
radiation problems associated with a linear analysis of diffraction-radiation
of regular waves of small amplitude is given by classical expressions [1,6].
The pressure pf'(¢,7n) and the flux ¢f(¢,1) in the free-surface boundary
condition likewise are presumed to be specified at every point (£, 7, 0)
of the undisturbed free surface X. A free-surface pressure pf'(¢,7) occurs
within a perturbation analysis of the influence of weak nonlinearities in
the free-surface boundary condition [1,3]. The free-surface flux g%, where
0 < ¢ means that water is injected through the free surface, is used in the
free-surface boundary condition .

8.2 Green function for wave diffraction
and radiation by stationary bodies

In accordance with the method of Green function and boundary-integral
flow representation introduced in chapter 6, a Green function G (&,x) that
is associated with the boundary-value problem is defined. Specifically,
this Green function satisfies the far-field condition

G—0as h=\(E—2)2+(n—y)2 > o0, (8.6a)
the sea-bottom boundary condition
Ge=0at (=—d (8.6b)

and the complementary equations

{ng—5<sx>6<ny>6<<z> in<<0}
if 2<0 (8.6¢)
Ge—f2G=0at (=0
{VEG:Oin (<0 }
or if 2z=0. (8.6d)
Ge—f2G=—-6(—x)d(n—y) at (=0

Equations (8.6cd) show that the Green function G(&,x) represents the
velocity potential of the flow created by a (pulsating) source located at the
point (z,y,z < 0) or a flux across the free surface at the point (x,y,z = 0).
These equations correspond to equations (7.28), (6.31)) and (6.35)).
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8.3 Free-waterplane boundary-integral
flow relations

Green’s fundamental relation is now applied, in the flow region
bounded by the surface ¥ defined by and Fig[8.1], to the Green func-
tion G (&,x) defined by (8.6) and the flow potential ¢ (&) determined by the
boundary-value problem (8.5) associated with the classical free-waterplane
linear flow model.

Three complementary boundary-integral relations
Green’s identity @ with ¥ (&) = G(&,x), the Laplace equation (8.5a)), the

far-field conditions (8.5b) and (8.6al), the sea-bottom boundary conditions
(8.5c) and (8.6b)), and the body-surface boundary condition (8.5€|) yield

/depVEzG:/Engdn((pGg—G(pg)—i-/EHda(GqH—gon-VEG) (8.7)

where G = G(€,x) and ¢ = ¢(&). Furthermore, da = da (&) and ¢ = ¢ (&)
denote the differential element of area or the flux at a point £ of the body
surface X and dv = dv (&) is the differential element of volume at a point
¢ of the 3D flow region D. The unit vector n = n (&) normal to X points
into the water, as was already noted and is shown in Fig[8]

Use of the identity

eGe—Go = (Ge—f2G) =G (g, — f2o) (8.8)

and the free-surface boundary condition (8.5d|) in the surface integral over
the undisturbed free surface X in (8.7) yields

dv o V2G — | ded Ge—f2G) =
/Dng /ZFinsa(cfe)

/ da(GqH—cpn'VEG)+/ dédn G (¢F —ifph) (8.9)
»H »F

where ¢, p¥" and ¢ are presumed known as was already noted. The flow
potential ¢ = (&) in the integrals over D and X" in can be expressed
as ¢ = (¢ — ¢) + ¢ where, in accordance with , ¢ = p(x) is the flow
potential at the singularity-point (submerged source or free-surface flux) x

in the Green function G(&,x). The relations

[avte=0)v¢c =0 md [ deine-o)(Ge-26) =0, (8.10)
D »F
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which follow from the identity ¢ — ¢ = 0 if £ = x and the relations (8.6¢fd)
and 7 yield

/dv @VgG—/ dédn o (Ge— f2G) = ¢ C(x) (8.11a)
D nF
where C(x) E/ dv VgG —/ dédn (Ge— f2G) . (8.11b)
D F
Equations (8.6c-d) then yield
1 DuUxF
C(x)=4 0 if xe¢ DUl (8.12a)
1/2 sHUT

where D U X and D; U £ denote the 3D regions that are strictly outside
or inside the body surface 7 UT'. The relations and (8.11a)) yield the
basic boundary-integral relation

C’(x)qb:/EHda(GqH—(pn-VéG)—i—qSZF (8.12b)

where ¢EF(X) E/ dédn G (¢ —ifph) . (8.13)
S F

In the special case when no body surface X exists, the relations (8.11b)
and (8.12a) yield C =1 in the entire flow region z < 0, and the boundary-

integral relation (8.12b|) with gbZF given by (8.13) explicitly determines the
velocity potential of the flow created by a prescribed distribution of pressure

pf(&,m) and/or flux ¢'(€,n) at the free surface X as
o= [ dedn G(a"~ifp") = 6%,
»F

in agreement with the expression that can be directly obtained via Fourier
transformation of the reduced boundary-value problem defined by (8.5atd).

The relation (8.12b)) with C(x) given by expressions (8.12a)) yield the

three complementary boundary-integral relations

6=| da(Gq"—pn-VeG)+¢™ if xe (DUST), (8.14a)
S H

%: da(GqH—gon-VgG)—i—(éZF if xe (27ur), (8.14b)
»H

0:/ da(GqH—apn-VgG)+¢EFifxe(DiUEf). (8.14c)
S H

The pressure p™” and the flux g7 at the free surface £ in the potential (;SZF
defined by (8.13) and the flux ¢ = n ~V€gp at the body surface ¥ are

presumed known in the boundary-integral relations (8.14]), as in (8.5d}e).
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The relation only involves ¢ = ¢(€) and ¢ = p(x) at points &
and x of the body surface . Thus, (8.14b) yields an integral equation
that determines the unknown flow potential (x) at x € 3. The relation
(8.14a) can be used subsequently to determine the flow potential p(x) at
points x in the flow region D U XF outside the body surface.

However, the relation does not determine ¢ inside the body.
Indeed, expressions yield C(x) = 0 at points x inside the body,
which means that ¢ = ¢(x) is undetermined at such points. This result is in
accordance with the fact that the relations and (8.14)), obtained from
Green’s fundamental relation applied in the flow region D outside the
body, cannot determine the flow in the region D; inside the body. Thus, the
basic boundary-integral relations associated with the free-waterplane
flow model do not preclude the occurrence of spurious solutions for some
special wave frequencies—commonly called irregular frequencies—because
the Green function G is defined in the flow region D outside the body surface
YH as well as in the region D; inside the body, where waves contained in
the Green function G can then exist.

The boundary-integral relations (8.14atb) involve the Green function
G and its normal derivative n -VgG. Specifically, the relations 1 b)

involve the distributions of G ¢ and G (¢* —ifp") over £ or £ and the
distribution of dipoles ¢ n ~V£G over 1. The Green function G is O(1/r)

but the normal derivative n - Ve G is O(1 /r?) as r — 0. Thus, G is weakly
singular (and easily integrable) as r — 0, but n -VgG is more strongly
singular (although integrable).

Equivalent single weakly-singular boundary-integral relation

Both the term C'(x) on the left side of (8.12b]) and the potential
x)=[ dapn ~V£G (8.15)
»H

on the right side of are discontinuous across the body surface .
However, these two discontinuities exactly cancel out, and the flow potential
¢ = ¢(x) defined by the boundary-integral relation is continuous at
¥ . A modified boundary-integral relation that avoids the discontinuities
in the values of C'(x) and ¢°(x) in (8.12b), and holds at the body surface
Y as well as inside and outside =, i.e. everywhere in the lower half space
z <0, is now obtained.

In accordance with expression (8.11b)), the complementary function
C;(x) E/ dv VEG —/ dédn (Ge— f2Q) (8.16a)
D, nr

151



is defined. Equations (8.6c+d) yield

0 DuUXF
Ci(x)=¢ 1 3 ifxed{D;uxl 3 . (8.16b)
1/2 sHyUT

The relations (8.12a]) and (8.16b)) then show that one has
C(x)+Ci(x) =1 (8.17)

at every point x in the lower half space z < 0. The divergence theorem
applied in expression (8.16al) yields the alternative expression

C;(x) :/ZHda n-VeG +f62/EFd§da7 G (8.18)

where f. can be replaced by f.

Addition of the term C; ¢ on the left and right sides of (8.12bf), with
expressions (8.17)) or (8.18) used on the left or right sides, yields

(1-CT) ¢ = EHda[GqH—&—(qb—(p)n.VgG]—i—(/)EF (8.19a)

where CT(x) = fZ/EFdﬁdn G(&,1,0,%) (8.19b)

and ¢2F is given by l) The boundary-integral flow relation 1’

holds at every point (z,y,z < 0) and is equivalent to the three comple-
mentary boundary-integral relations (8.14) for points x in the flow region
DUXF, at the body surface Z#UT or in the region D; UYL inside the body.

The term ¢ — p = p(x) — p(£) in (8.19a) vanishes at points & = x in the
Green function G(€,x). The singularity in the integrand of the integral

#(x) = /ZHda (0 —9)n-VeG (8.20)

is then weaker than the singularity in the integrand of the integral .
Specifically, the Green function G and the dipole term (¢ — ) n 'VEG
in both are O(1/r) as r — 0 and are then weakly singular. As a
result, the flow potential ¢¢ defined by the weak dipole distribution
is continuous at the body surface £, whereas the potential ¢ defined by
is not, and every component of the weakly singular boundary-integral
relation is continuous at the body surface X

The weakly singular boundary-integral relation applied at points
x € X only involves ¢ (&) at &€ € 2 and ¢(x) at x € £ This boundary-
integral relation therefore yields a weakly-singular integral equation that
determines the flow potential ¢ (x) at points x of the body surface, like the

boundary-integral relation (8.14b)).
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Figure 8.2: Boundary surface ¥ = SBUR*uUSfUSF U USH associated
with the rigid waterplane boundary-value problem defined by for
diffraction-radiation of regular waves by an offshore structure in water of
uniform finite depth. The unit vector m normal to the closed boundary
surface ¥ points outside 3 and the flow region. The unit vector n = —m
normal to the body surface 2 points outside the body.

8.4 Rigid-waterplane flow model
and boundary-value problem

A complementary analysis of diffraction-radiation of regular waves by a
stationary body that pierces the free surface is now considered. This analysis
is based on an alternative linear flow model—called rigid-waterplane flow
model hereafter—to the classical free-waterplane flow model considered in
sections 8.1-8.3 and Fig[8.1]. In the rigid-waterplane flow model, a body that
pierces the free surface is treated as the ‘zero-submergence limit’ of a body
that is closed via a rigid inner waterplane submerged at an infinitesimally
small depth, as is shown in Fig[8.2] and Fig[8.3] and is now explained.

Rigid-waterplane flow model

The main feature of this flow model is that a thin band —¢ < z < 0 with
0 < 6§ < 1is removed from the upper part of the body surface X, which is
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Figure 8.3: The left and right figures show 2D cuts of the flow regions
that are defined in Fig[8.1] and Fig[8:2| and are associated with the classical
free-waterplane linear flow model or the rigid-waterplane linear flow model.

closed by a rigid horizontal lid denoted as E{»{ . The open free-surface piercing
body surface X in Fig associated with the classical free-waterplane flow
model then becomes the extended closed body surface S U SH  where ©#
denotes the body surface £ from which the thin band —¢ < z < 0 has
been removed. The rigid lid 3 that closes the open body surface X is
located in the plane z = —4, as is shown in Fig[8.2] The portion of the
free-surface plane z = 0 located inside the body surface X (above the lid
YH) is denoted as %I, and the free surface outside X but inside > is
denoted as X7

Thus, as is illustrated in Figl8.2], the rigid-waterplane linear flow model
and the related boundary-value problem are associated with the flow region
D inside the closed boundary surface

y=xBusxusfustfuxfiust (8.21)

where % is an infinitely large surface, %2 and ' U X! denote the portions
of the sea bottom ¢ = —d or the free surface ( = 0 inside X>°, and LH uX#
is the extended body surface obtained by closing the truncated body surface
Y with a rigid horizontal lid 2% as was already explained. The unit vector
m normal to the boundary surface ¥, notably at the rigid lid £ and at
the waterplane X" points outside the flow region D, whereas the vector
n = —m normal to the body surface X¥ points into the water.

Free-waterplane and rigid-waterplane linear flow models

Differences between the classical free-waterplane linear flow model and the
alternative rigid-waterplane linear flow model, associated with Fig[8.1] or
FiglR.2], are illustrated in Fig[8.3] The flow region outside the mean wetted
body surface 2 and under the undisturbed free surface ¥, associated with
the free-waterplane model and the left figure in Fig[8:3] can be viewed as
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the limit § = 0 of the flow region associated with the rigid-waterplane model
and the right figure in Fig[8:3] Thus, the velocity potentials that correspond
to Fig[8:2], with 6 = 0, or to Fig[8.] satisfy identical boundary conditions
at identical boundary surfaces X%, ©F and £, and satisfy the Laplace

equation in identical flow regions.

In the classical free-waterplane linear flow model analyzed in section 8.3
, Green’s identity is applied in the flow region that is obtained in the limit
6 = 0 of the rigid-waterplane model. However, Green’s identity is applied
in the flow region outside the closed body surface X U ©H and below
the entire free-surface plane X U Xf in the rigid-waterplane model, and
the limit & — 0 of the resulting boundary-integral flow representation is
considered subsequently.

Thus, the order of the two processes ‘apply Green’s identity in a flow
region’ and ‘consider the limit § — 0’ is interchanged in the free-waterplane
and rigid-waterplane linear flow models. Specifically, the limit § = 0 of
the rigid-waterplane flow region is considered and Green’s identity is subse-
quently applied in that flow region in the free-waterplane model, whereas the
rigid-waterplane model considers the limit § — 0 of the boundary-integral
flow representation that is obtained by applying Green’s identity in the flow
region defined for 0 < 6.

The horizontal lid X4 that closes the body surface 3% is a rigid surface,
as was already noted. Section 2.6 shows that only very short time-harmonic
waves can exist in the shallow layer of water —0 < z < 0 between the lid
Y and the free surface XI". Specifically, expression shows that the
wavelength A = 27/k“ of elementary waves in water of depth d* is given
by A\ ~ 27y/d* as d¥ — 0, and one then has \* — 0 as § — 0.

Rigid-waterplane boundary-value problem

In accordance with the boundary surface 3 that corresponds to the rigid-
waterplane flow model, the free-surface boundary condition is applied at the
entire free-surface plane LU Xf" and the body-surface condition is applied
at the extended body surface X U L defined in Fig7 rather than at
the intersecting surfaces X or £ shown in Fig.

Thus, the boundary-value problem associated with the rigid-waterplane
linear flow model consists of the Laplace equation

V§<p56§¢+6§ga+a§gp=0 in D (8.22a)

where D denotes the flow region inside the closed boundary surface ¥ defined

by (8:21)) and Fig[8.2], the far-field boundary condition

o —0 as &2+ 12 — o0 (8.22b)
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applied at ¥X°°, the sea-bottom boundary condition
_ B
o, =0 at X7, (8.22¢)

the free-surface boundary conditions

i ¢ F_F F
. Jifri—a b
o= fop= { 0 at 5 (8.22d)
and the body-surface boundary conditions
n-Vep=q" s
§ at e (8.22¢)
904 =0 Ez

The limit § — 0 is ultimately considered, and compatibility between the
free-surface boundary condition (8.22d)) at the waterplane %£" and the body-
boundary condition (8.22¢) at the rigid lid 3 is imposed in that limit.

8.5 Rigid-waterplane boundary-integral
flow relations

Green’s fundamental identity is now applied, in the flow region
bounded by the surface 3 defined by and Fig, to the Green func-
tion G(&,x) determined by (8.6) and the flow potential ¢(£€) determined
by the boundary-value probl associated with the rigid-waterplane
linear flow model.

Three complementary boundary-integral relations

Green'’s relation (6.3) with ¢ (€) = G(&,x), the Laplace equation (8.22al),
the far-field boundary conditions (8.22bf) and , the sea-bottom bound-

ary conditions (8.22¢)) and (8.6b)), and the body-surface boundary conditions
(8.22¢) yield

[avevga=[  dean(eGi- G- [ deaneG
D nFYSF st

+/2Hda(GqH—g0n-V€G) (8.23)

where G = G(€,x) and ¢ = ¢ (&) as was already noted. The unit vector
n = n(§) normal to £ points into the water, as is shown in Fig.
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The identity (8.8]) and the free-surface boundary conditions (8.22d)) can
be used in the surface integral over the undisturbed free surface X*UX! in

(8.23)). One then obtains

/dwvga— dédn ¢ (Ge— f2G) =
D SFy st

da(GqH—gpn-VEG)—/ dedn o Go+ 0™ (8.24)
nH S

where QSEF is given by l| . The flow potential ¢ = (&) in the integrals
over D and XU XL in (8.24) is now expressed as ¢ = (¢ — ¢) + ¢ where

¢ = p(x) is the flow potential at the point x in the Green function G(&,x).
The relations (8.10)) yield

/ dv o VEG —/ dedn o (Ge—f2G) = ¢ C(x) (8.250)
D SFUSE
where C(x) E/ dv VgG - dédn (Ge — f2G) . (8.25b)
D nEUSF
Equations (8.6c-d) then yield
1 DuXfuxt
Cx)=4¢ 0 if x € D; (8.26a)
1/2 sHyzH

where DUXFUSE and D; denote the 3D regions located strictly outside or
inside the closed extended body surface %% U X . The relations 1D and

(8.252)) yield
C(x)¢=/ da(GqH—tpn-VgG)—/ dédn ¢ Ge + ¢ . (8.26b)
= s

The relation (8.26b)) and expressions (8.26a)) yield the three boundary-
integral relations

o= da(Ga" - on-%G) - [ dednoGe+ 0¥
s s

if xe (puxfuxl), (8.27a)
¢ _ da(GqH—apn-VéG)—/ dfdng@GC—kqﬁzF
2 Jon =l
if xe (ZHust) | (8.27b)
0= da(GqH—g)n-VéG)—/ dédn ¢ Ge + ¢>"
nH nH
if xeD; . (8.27¢)
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The three complementary boundary-integral relations (8.27) include the dis-
tributions of dipoles ¢ n -VgG and ¢ G¢ over the surface X U S which

create a discontinuous flow potential at S U X4 as is explained in section
8.3. A boundary-integral relation that holds everywhere in the lower half
space z < 0 and is equivalent to the three relations (8.27) is now obtained.

Equivalent single weakly-singular boundary-integral relation
In accordance with expression (8.25bf), the complementary function
Ci(x) = / dv ng (8.28a)
D;

is defined. Equations (8.6¢fd) yield

0 Duxfuxt
Ci(x)=< 1 3 if xe D; : (8.28b)
1/2 sHyxd

The relations (8.26a]) and (8.28b)) show that one has

C(x)+ Ci(x) =1 (8.29)

for every point x in the lower half space z < 0. The divergence theorem
applied in (8.28a]) yields the alternative expression

C;(x) :/EHdamVEGJr/EHdgdn Ge . (8.30)

Addition of the term C; ¢ on the left and right sides of (8.26bf), with
(18.29) or (8.30) used on the left or right sides, yields the boundary-integral

relation

o= [ dalGa"+ (6= )n-VeGl+ [ dedn(6—¢)Ge+0™ (831)

where ¢EF is given by li . The boundary-integral relation (8.31)) holds at
every point x and is equivalent to the three complementary relations (8.27)).

Limit 6 — 0
The boundary-integral relation (8.31]), which holds for a closed body surface
SHUSH that is submerged at some depth & (large or small) below the free-

surface plane { = 0, is now considered in the limit § — 0. In this limit, one
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has X — $H and © — 2 and (8.31)) becomes

6= da[Gq"+ (- @) -VeGl+ ol +06" (8.32a)
ZH

where ¢f E/ZFdfdn (0 —w)Ge . (8.32b)

The identity (¢ — ) Ge = (¢ — @) (Ge — f2G) + f2G (¢ — ¢) and the
free-surface boundary conditions in (8.6ctd) yield the alternative expression

of = 2] dsan(o-p)G (8.320)

where f. can be replaced by f.

The boundary conditions (8.22dle) at the waterplane 1" and at the rigid
lid £ are compatible if one has

(&) =0 for £€Xf as 6 0. (8.33)

This compatibility condition and expressions (8.32b}c) yield
o = CT¢ where CT E/ dédn G = f2/ dédn G . (8.34)
=F wF

The boundary-integral flow relation (8.32a) with ¢ = CT¢ and CT given by
the second expression in (8.34)) is identical to the boundary-integral relation
(8.19) associated with the free-waterplane boundary-value problem.

Representation of the function C'(x) as a waterline integral

The function CT(x) defined by the waterplane integral

Cl(x) = /E _d&dn G (8.35a)

i

:/ dedn|[ V3G~ (07 +02) 6] (8.35b)
sr

where ¢ means integration with respect to ¢, can be expressed as a line
integral around the body waterline T'. For points x ¢ XI the Laplace
equation in if z = 0 or the Poisson equation in if z < 0 show
that one has VgGC = 0 in (8.35b]), which then becomes

r_ _ ¢ ¢y _ V.- ¢
Cc' = /Efdfdn(agg-l-G,m) = /Zfdgd?]VE VEG
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where 65- = (0¢,0y,0). The 2D divergence theorem finally yields

Cl(x) = —/Fdé v- V,EGC = fQ/Engdn G (8.36)

where the unit vector v = (v*,1¥,0) is normal to the waterline I' and
points into the water, like the unit vector n, and the second expression for

the function CT in (8.34) was used. The function C*(x) defined by the

alternative expressions ([8.36)) are continuous in the entire lower half space
z<0.

8.6 Conclusion

Final boundary-integral relations

Expressions (8.32a)), (8.34]) and (8.36) finally yield

(1-C") ¢ ="+ ¢EF where (8.37a)

r_— . ¢ _ f2 _

cr= /Fdeu Ve G f/zfdgdnG /Zfdgdn Ge, (8.37b)

H=1[ da|¢"G - Ve G 8.37

o= oG+ (0= )n -] (5370

o= [ dedn ("1 G (8.37d)
oF

with ¢ = ¢ (&) and ¢ = ¢(x). The boundary-integral flow representation
holds in the entire lower half-space z < 0 and yields a weakly-singular
integral equation that determines the unknown flow potential at the hull
surface of a body in regular waves [8,2]. The function CT(x) in is
explicitly defined via the alternative expressions as a line integral
around the waterline I" of the body or as an integral over the waterplane
¥ inside the body surface %H.

The agreement between the boundary-integral relations associated with
the classical free-waterplane linear flow model (in which Green’s identity is
applied to the flow region that corresponds to § = 0) or the rigid-waterplane
flow model (in which Green’s identity is applied to the flow region that cor-
responds to 0 < § < 1 and the limit § = 0 of the resulting boundary-integral
flow representation is considered subsequently) shows that these linear flow
models are consistent for diffraction and radiation of regular waves by a
stationary body, and that the rigid waterplane ¥ has no influence on the
velocity potential of the flow around the body surface X outside the body
or at X in that case.
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Flow-field point x outside the ship-hull surface

The flow representation (8.37)) yields
¢=¢>2F+/ da[qHG— <pn~V£G} +Co
>H
where C E/ d&dn G¢ +/ dan-VeG
nF nH

is the flux through the closed surface S UXH due to a submerged source, or
a flux through the free-surface plane, at the singularity point x in the Green
function G'. One has C' = 0 if x € (DU X¥). Thus, the flow representation
expresses the flow potential ¢ = p(x) at a point x in the flow region
(strictly) outside the body surface as

¢=¢2F+/2Hda{qHG—<pn-V£G} (8.38)

where the flow potential ¢ = (&) at L is determined by the weakly

singular boundary-integral equation (8.37)). The flow representation (8.38)

is identical to the representation (|8.14a)), as expected.

Removal of irregular frequencies

As was already noted, the Green function G(&, x) associated with diffraction
and radiation of regular water waves is defined within the region —d < <0
and therefore creates waves outside as well as inside the body, which can
result in spurious solutions for some special wave frequencies called irregular
frequencies [8,3]. These spurious solutions can be prevented by imposing
that ¢ is nil at the waterplane X%, which yields

» [1=CTyo) wH
¢H+¢2{ 0 }1fx€{zF} (8.39)

%

where ¢ = ¢(x). The pair of boundary-integral relations (8.39) applied at
x € 2 or at x € ©F only involves the potential (&) at points & € X and
therefore yields an overdetermined system of equations. The flow potential
©(x) defined by the pair of integral equations is free from irregular
frequencies [8,4].
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Chapter 9

Boundary-integral flow
relations for a ship that
advances through waves

This chapter extends the applications of Green’s fundamental boundary-
integral relation to wave diffraction and radiation by a stationary body
(offshore structure, moored ship) considered in chapter 8 to the case of a ship
that advances through waves, or in calm water, at a constant speed along a
straight path. Both the free-waterplane linear flow model-—commonly called
Neumann-Kelvin model for a ship that steadily advances in calm water or
through waves—and the rigid-waterplane flow model defined in chapter 8 are
considered again. Specifically, Green’s basic identity is applied to the usual
Neumann-Kelvin (NK) flow model in sections 9.1-9.3, and three variants
of the rigid-waterplane (RW) flow model are analyzed in sections 9.4-9.6.
Thus, four alternative linear flow models are analyzed in sections 9.1-9.6.
These four linear flow models yield five alternative boundary-integral flow
representations, which are compared in section 9.7. In the special case of a
ship that steadily advances in calm water, an additional linear flow model,
called Neumann-Michell (NM) model, is defined in section 9.8. [9,1]

As is explained in chapter 8 for the special case of wave diffraction and
radiation by a stationary body, Green’s basic identity is applied in the flow
region defined in the left half of Fig[9.1]in the classical NK linear flow model,
but is applied in the flow region defined in the right half of Fig9.1] in the
RW flow model. Thus, an open free-surface piercing ship is viewed as the
‘zero-submergence limit’ of a body that is closed via a submerged rigid lid
in the RW flow model, as is explained in Fig[9.1]
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Figure 9.1: The figures on the left and the right show 2D cuts of the flow
regions depicted in Fig[9.2]or Fig[0.3], which are associated with the classical
Neumann-Kelvin (NK) or the Rigid-Waterplane (RW) linear flow models.
In the NK flow model, Green’s basic identity is applied in the flow region
outside the mean wetted ship-hull surface  and below the undisturbed
free surface XF associated with the basic NK boundary-value problem. In
the RW flow model, Green’s identity is applied in the flow region bounded by
the closed body surface 7 UXH and the entire free-surface plane X U X
above the submerged body, and the limit § — 0 of the resulting boundary-
integral flow representation is considered subsequently. The NK flow region
can be viewed as the limit § = 0 of the RW flow region depicted in the
right figure. Thus, the order of the processes ‘consider the limit § — 0’
and ‘apply Green’s identity in a flow region’ are interchanged in the NK
and RW linear flow models. Specifically, the limit § = 0 of the RW flow
region is considered and Green’s identity is applied to that flow region in
the NK model, whereas the RW model considers the limit 6 — 0 of the
boundary-integral flow representation that is obtained by applying Green’s
identity in the flow region that corresponds to 0 < § < 1.

Three variants of the RW linear flow model are considered. These three
linear flow models yield four alternative boundary-integral flow representa-
tions, in addition to the NK flow representation; Specifically:

(i) The basic RW flow representation associated with the RW flow model
in which no restriction is imposed on the flow within the thin layer of water
above the rigid lid 3 that closes the open body surface £ in the RW flow
model.

(ii) The RW-hw and RW-h flow representations that are obtained if the
flow in the thin layer of water between the rigid lid ©¥ and the waterplane
$F above the lid is assumed to be two-dimensional.

(iii) The NN flow representation obtained if no flow is allowed in that
thin water-layer, which is then assumed to be a dead-water region.
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Figure 9.2: Galilean system of Cartesian coordinates (x,y, z) and boundary
surface ¥ = X U XF U B associated with the basic Neumann-Kelvin
boundary-value problem for a ship that steadily advances through regular
waves in deep water.

9.1 Neumann-Kelvin boundary-value
problem and related Green function

The flow created by a ship that advances, at a constant speed along a
straight path, through regular waves in deep water is considered in this
chapter. As in chapters 1 and 6, the flow is observed from a Galilean
frame of reference that follows the ship, and a related system of Cartesian
coordinates x = (z,y,2) and & = (£,7,() is defined. The z/{ axis is vertical
and points upward, and the x/¢ axis is taken along the path of the ship and
points toward the ship bow, as in chapters 1 and 6. As in section 1.5, the
coordinates € and x, the corresponding flow potentials

p=p(§) and ¢ =p(x),

and all other flow variables are nondimensional in terms of a reference length
L, usually chosen as the length L of the ship, the acceleration of gravity
g and (for the pressure) the water density p,,.

As in (1.36]) and (6.19), the velocity potential of the flow created by the
ship is expressed as

P(&,t) =Rep(§) e =Rep(g)e (9.1a)
where f. = f+ie with e=40. (9.1b)
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The spatial component ¢ (£) in is determined by a classical boundary-
value problem, commonly called Neumann-Kelvin (NK) problem, that is
associated with the Neumann-Kelvin linear flow model. The classical NK
linear flow model and boundary-value problem are associated with the closed

boundary surface
»=x2uxfuxf (9.2)

where ¥°° is an infinitely large surface that encloses the flow region D, and
©F is the portion of the free-surface plane z = 0 that is inside X>° but
outside the mean wetted ship-hull surface £, as is shown in Fig. The
intersection curves between the free-surface plane z = 0 and the surfaces
¥ and ¥ are denoted as I'>* or I', which are oriented as in Fig.
The portion of the plane z = 0 that is inside the ship-hull surface L is
denoted as X" and called ‘ship waterplane’. The unit vector m normal to
the boundary surface ¥ that encloses the flow region D points outside D,
whereas the unit vector n = —m normal to the ship-hull surface X points
outside the ship (into the water).

Classical Neumann-Kelvin boundary-value problem

The spatial component ¢ (&) of the flow potential associated with
the free-waterplane flow model is determined by the NK boundary-value
problem , now restated for ease of reference. The flow potential ¢ (&)
satisfies the Laplace equation

Vip=(0{+0,+0)p=0inD (9.3a)
where D denotes the flow region outside the ship, the far-field condition
Veyp =0 as £ — o0, (9.3b)
and the free-surface and ship-hull surface boundary conditions

o+ (1f+Foe)p=ifp"+Fpf —¢" at B (9.3¢)
and n Vg = ¢ at B (9.3d)

The Froude number F' and the non-dimensional wave frequency f in
are defined by . The flux ¢ at the ship-hull surface £ and the
pressure p! and flux ¢ at the free surface £ are presumed known in the
general boundary-value problem that is considered in this chapter.

Green function for a ship that advances through regular waves

The Green function G(&,x) associated with the Laplace equation ({9.3al),
the far-field condition (9.3b)) and the boundary condition (9.3¢c) at the free
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surface satisfies the far-field condition
G—0as€— o0 (9.4a)

and the field equations and free-surface boundary conditions

{V§G=5(§—x)5(n—y)5(4—2) in ¢<0

if 2<0 (9.4D)
6<G+ (ifE—Fag)QG =0 at C: 0

VngoinC<0

or a<G+ (if;_—Fag)QG: if z=0. (9.4C)
—0(€—x)o(n—y)at (=0

The Green function G(&,x) defined by represents the potential of
the flow that is created at a point (£,7,{ < 0) by a source located at a
point (z,y,z < 0) or a flux across the free surface at (z,y,z = 0). These
pulsating singularities (source or flux) steadily advance along the £ axis at
a (nondimensional) speed —F, in accordance with the term —F 0 in the
free-surface boundary conditions in c).

9.2 Neumann-Kelvin boundary-integral
flow relations

Green’s fundamental relation is now applied, in the flow region
bounded by the surface ¥ defined by and Fig, to the Green func-
tion G(&,x) determined by and the flow potential ¢ (&) determined by
the Neumann-Kelvin boundary-value problem .

Three complementary boundary-integral relations

Green’s relation (6.3)) with ¢ (&) = G (&, x), the Laplace equation (9.3a)), the
far-field boundary conditions ((9.3b}) and (9.4a)) and the boundary condition

(19.3d)) at the hull surface yield
/ dvgoVEG :/ dédn(p0cG—Gocyp)
D nF
+ da(qHG—gon-VSG) (9.5)
S H

where G = G(§,x) and ¢ = ¢(€) as was already noted. Furthermore,
da = da(¢) and ¢ = ¢f(€) denote the differential element of area or the
hull-flux at a point & of the hull surface ©#, and dv = dv(€) is the differential
element of volume at a point £ € D.

167



The identity

90cG —Gcp=¢[0cG+ (if. = F¢)*G]~ G [dcp + (ife + Fe)*p]
+ FO¢[F(GOgp— ¢ 0:G) +2if. Gp]

applied in the integral over the free surface L in (9.5)), together with the
free-surface boundary condition (9.3c)), Stokes’ theorem and the far-field

conditions (9.3b)) and (9.4al), yield
/ dv chEG 7/ dédn ¢ [0:G + (if. —F0¢)*’G| =
D »F

F/Fdn [F(G@g(pfcpagG)JrQifEGgD]*F/

ZHda [qHG— pYn ~V£G}

+/ dédn [¢" —Fpf —ifp"]|G (9.6)
ZF

where the mean ship waterline I is oriented in the clockwise direction when
viewed from above the free surface as is shown in Fig[0.2]

The flow potential ¢ = (&) in the integrals over D and ¥ on the left

side of is now expressed as ¢ = (¢ — ¢) + ¢ where ¢ = ¢(x) is the
flow potential at the singularity-point x in the Green function G(&,x). The
relations

/ dv (p — ¢)v§G =0 and
D
[ dedn(e=6)[0cG + (i£,~F2)*G] =0

which follow from the relations c) and , yield

/dmpvgc:—/ dédn ¢ [0cG + (if. —F0¢)*G| = ¢ C(x) (9.7a)

D »F
where C(x) z/ dvvga—/ d€dn[0:G + (if. —F0¢)*G] . (9.7b)
D SF

Equations (9.4b}c) yield

1 DUXF
Cx)={ 0 pifxe{D;UxE (9.8a)
1/2 sHEyr

where DU X and D; U % denote the 3D regions and the portions of the
free-surface plane ( = 0 that are located strictly outside or inside the mean
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wetted ship-hull surface ¥ UT. The relations and (9.7a)) yield
C(x)o= da{qHG—cpn-VéG}
S H
+F/dn[F(Gag<p—<p8§G)-i-QifEch]—f—(bEF (9.8D)
r

where ¢EFE dédn [qF—Fpg— ipr]G . (9.8¢)
»F

Explicit solution in a special case

In the special (and simplest) case when no ship-hull surface $# exists, both

the relations and yield C' =1 in the entire flow region z < 0,
and the boundary-integral relation explicitly determines the velocity
potential of the flow created by a distribution of pressure p(¢,n) and/or
flux ¢%(¢,7) at the free surface ©F as

¢ = qSEFE/Engdn [qF —Fpf —ifpT]C . (9.9)

This explicit expression for the velocity potential ¢ of the flow created by
a prescribed distribution of pressure pf” and/or flux ¢ at the free surface
¥ can also be directly obtained via Fourier transformation of the reduced
boundary-value problem defined by (9.3afc).

Equivalent single weakly-singular boundary-integral relation
Expressions yield three boundary-integral identities that hold inside,
outside or at the ship-hull surface. An equivalent boundary-integral identity

that holds everywhere in the lower half space z < 0 is now obtained. In
accordance with expression (9.7b)), the complementary function

s (%) E/de e —/Engdn [0.G + (if.— FO)’G]  (9.10a)

is defined. Equations (9.4bfc) yield

0 DuUXF
Ci(x)={ 1 pifxel{D;uxF} . (9.10Db)
1/2 sHEyr

The relations (9.8al) and (9.10b) show that one has

C(x)+Ci(x) =1 (9.11)
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at every point x in the lower half space z < 0.

The divergence theorem applied in (9.10a)) yields
C;(x) :/ dan -Vé-G—i— ff/ dédn G — F/ dédn 0¢ (FO¢ —2if. )G .
$H sF F
Stokes’ theorem finally yields the alternative expression

C;(x) z/EHdan-VgG—l—ff/EFdfdnG—i—F/Fdn(Fag—Qife)G (9.12)

where the waterline I' is oriented as in Fig[9.2]

Addition of the term C; ¢ on the left and right sides of (9.8b)), with (9.11])
or (9.12)) used on the left or right sides, yields the boundary-integral relation

=[ da|d®G - VG 2 dédn G
o= dala"G+ @ omvea] s sof acan
+F/Fd77[FG35<P+(¢—w)(FGs—2ifeG)}

—|—/ d€dn [qF—Fpg—ipr}G. (9.13)
»F

The boundary-integral relation holds at every point (z,y,z < 0)
and is equivalent to the three relations with C(x) =1, 0 or 1/2 for
points x in the flow region D U XF| the region D; U X inside the ship, or
at the ship-hull surface ¥ UT. The term ¢ — ¢ = p(x) — ¢(£) in
vanishes if the points £ and x in the Green function G(€,x) coincide. The
singularities in the integrands

pn -VSG and ¢ G¢ (9.14a)

of the integrals over the hull surface ¥ or the waterline I' in (9.8b)) are
then weakened in the integrands

(6 —p)n -VgG and (¢ — @) Ge (9.14b)

of the corresponding integrals in (9.13). As a result, the hull-surface or

waterline integrals of the functions (9.14b)) are continuous at the ship-hull
surface X# UT', whereas the corresponding integrals of the functions
are discontinuous, in accordance with the jump in the value of C'(x) across
the surface L7 UT.
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9.3 Neumann-Kelvin flow representation
and particular cases

The boundary-integral relation (9.13)), with f. denoted as f, finally yields

[1 —f2/2Fd§dnG

o= dsdn[a"~Fof ~ifp")G
+/ da[qHG—i—(qb—go)n-VéG} (9.15)
»H

+F/Fd77[FG3w+(¢—<P)(FGs—QifG)] .

This boundary-integral flow representation is called Neumann-Kelvin
(NK) flow representation hereafter. [9,2]

FIVE PARTICULAR CASES

In the particular case of a ship that steadily advances in calm water,
one has f = 0 and the NK flow representation (9.15)) becomes

qﬁ:/EFdfdn[qF—Fpg]G—i—/ZHda[qHG—k (¢—<p)n.V€G]

+F2/Fdn[G8§<p+(¢—cp)G5] . (9.16)

In the particular case of a stationary body in regular waves, i.e. in
the special case F' = 0, the line integral around the body waterline I" in the
Neumann-Kelvin flow representation (9.15)) disappears, and (9.15]) becomes

[1 —fz/ZngdnG

_ F_ 4 F
o= [ deanla™=isr"]G

+/2Hda{qHG+(¢—<P)H'V5G} (9.17)

in agreement with the boundary-integral flow representation defined by
[B19) and (B.13).

In the particular case of a body that is fully submerged under the
free-surface plane ( = 0, the integral over the waterplane ¥I" and the
integral around the ship waterline I' in the Neumann-Kelvin flow represen-
tation disappear. This flow representation then becomes

¢p=[ dédn|q"—Fp{ —ifp"]G

+/2Hda{qHG+(¢—s0)n'VgG} (9.18)
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Figure 9.3: Boundary surface ¥ = ¥*° UXFU S U S U BH related to
the rigid-waterplane linear flow model. The unit vector m normal to the
boundary surface ¥ points outside the flow region, whereas the unit vector
n = —m normal to the ship hull surface ¥ points outside the ship.

where Y denotes the entire plane ¢ = 0, and the (closed) surface of the
fully submerged body is denoted as X .

If no body surface Yy exists, the flow representation (9.18)) becomes
¢p=[ dédn[q"—Fpf—ifp"]G (9.19)

in agreement with expression for the potential ¢ of the flow created
by a free-surface distribution of pressure p! and/or flux ¢".

The Neumann-Kelvin flow representation is significantly different
for the general case Ff # 0 and the particular cases f = 0 or F = 0. In
particular, the Neumann-Kelvin flow representations and for
a ship that advances through regular waves or in calm water contain line
integrals around the ship waterline I' and these waterline integrals involve
the flow potential ¢ and its derivative J¢ ¢, whereas the Neumann-Kelvin
representation for an offshore structure in waves does not contain a
waterline integral and the flow potential ¢ only appears at the hull surface
YH . The boundary-integral flow representations and for a ship
that steadily advances through regular waves or in calm water are then much
more complicated than the boundary-integral flow representation for
wave diffraction-radiation by a stationary body.
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9.4 Basic rigid-waterplane (RW) flow model
and RW flow representation

The flow representation (9.18) for a general closed body surface ¥ g that
is fully submerged under the free-surface plane ¢ = 0 is now applied to a
particular type of submerged bodies. Specifically, the body surface

Yg=x"uxl, (9.20a)

where 2 denotes a rigid horizontal lid that closes the open body surface
Y as is illustrated in Fig7 is considered. The free surface ¥ associated
with this special submerged closed body consists of the entire plane ( = 0
and is given by

Yr=xuxt (9.20b)
where $I" denotes the portion of the free surface that is above the rigid
body lid £ as is shown in Fig.

The free-surface and hull-surface boundary conditions (9.3c¢td) yield

: F+F rF__F F
8<<P+(ife+F35)2<,0{1fp Op§ Tl at oF (9.21a)

n-Vep=q )il
and { S . } at { P (9.21b)

The flow representation (9.18)) for a general submerged closed body then
becomes

¢ =0+ + ¢ where (9.222)
¢2F5/ dédn [ q" —Fpf —ifp" ]G, (9.22b)
>F '
oM E/EHda [qHG+(¢—<p)n~V€G] (9.22¢)
and ¢F = da (¢ —¢) Ge . (9.22d)
=

This flow representation holds for any submergence depth 6 (large or small)
of the horizontal rigid lid X4 below the free surface. The rigid-waterplane
(RW) linear flow model defined in section 8.4, Fig and Fig considers
the special case when the rigid horizontal lid $ of the closed body X7 U
is submerged at an infinitesimally small depth 0 < § < 1.

In the limit § — 0, one has ¥# — ¥# and © — %F. The boundary-
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integral flow representation ((9.22)) then becomes

6=0% + o7+ ¢ where (9.23a)

¢>2F5/ d¢dn[qF —Fpf —ifp"]G, (9.23b)
ZF

o E/ da[qHG—k((é—(p)n-VSG} with ¢ =n- Vg, (9.23¢)
nH

of =[ dean(o-)Ge=[ dsan(o- o)1 +iFO PG . (923

The free-surface boundary conditions in (9.4bfc) were used in (9.23d).

The RW flow representation defined by does not contain a
line integral around the ship waterline I', but includes the surface integral
¢ over the ship waterplane %I, Thus, the RW flow representation
yields an integral equation that determines the flow potential ¢ over the
extended closed ship-hull surface ©# U XL

9.5 2D-flow at the ship waterplane, and
RW-hw and RW-h flow representations

The flow within the thin water-layer —§ < z < 0 is now analyzed based on
the assumption that the boundary conditions

dep =0 at ¥ and (9.24a)
Ocp+ (If+Foe)p =0 at ©F (9.24b)

are both satisfied, and that the flow in the thin water-layer —§ < z < 0
is two dimensional and hence determined by a flow potential ¢(&,n) that
satisfies the 2D Laplace equation. One then has

Qee + Qny =0 if (£,17,0) €2 and —d< (<0 (9.25a)
and F2pee +2ifFpe — f2o =0 if £ € BF (9.25b)

where f. is denoted as f in (9.25b)). In the particular case of an offshore
structure in regular waves, one has F' = 0 and (|9.25b|) becomes

=0 if ¢exl (9.26)
in agreement with (8.33)).

Analysis of 2D flow in the thin water-layer above the rigid lid ©#

The general solution of equation (9.25b)) in the general case f/F # 0 is
¢ = [Hi(n) +EHa(n)] e H¢I/"
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where Hi(n) and Ha(n) are undetermined functions. The Laplace equation

then yields
HY (n) + & Hy/ () = (f/F)? [Hy(n) + EHa(n)] + 2 (F/F) Ha(n) -

This equation, which holds for all values of £, yields

HY — (f/F)*Hy =0 and HY — (f/F)?Hy = 2i(f/F)H, .
If f/F # 0, one then has

Hy = Cf e™/F 4 Oy e=/F and

Hy = Cfe"/F 4 o e=1IF 4 iy [C;renf/F_ CQ—e—nf/F}
where C and CF are undetermined. The potential ¢ of the 2D flow within
the thin layer of water between the surfaces £ and X!" is then given by

o= [CT+CF (¢ +in)]e EHIMIE

+ [Or+ 05 (6 —in)] e 1 EIMIE 4 f/R 20 . (9.27)

The particular solutions C& = 0 and C5¥ = 0 yield the ‘no-flow’ solution
(19.26)).

In the special case f/F = 0, i.e. for a ship that steadily advances in
calm water, equations (9.25) yield

¢ee =0 and ¢, =0 if £€ 2. (9.28a)

The potential ¢ of the 2D flow within the thin layer of water between the
surfaces ¥ and Xf is then given by

p=Co+Cr1&+Can+Cs&n if f/F =0 (9.28Db)

where Cy, C1, Cy and C5 are undetermined. The particular solutions C,, = 0
with 0 < n < 3 yield the ‘no-flow’ solution (9.26)). The 2D flow velocity

defined by (9.28b]) at a point (£,7) € B is given by
(O, Onp) = (C1,C2) + C3(n, €)

where (C1, Cs) evidently is a uniform stream and C3(7,£) corresponds to a
stagnation flow within the corners defined by the lines n = +¢€.

RW-hw FLOW REPRESENTATION

The waterplane integral ¢ in the basic RW flow representation ([9.23)
is now considered. The first waterplane-integral expression in (|9.23d)) yields

of = [ dean(o-¢)Go= [ dedn(s—o)[VE6<- (0 +02) <]
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where ¢ means integration with respect to ¢. The Poisson and Laplace

equations in c) yield
o /Efdgdweb)(azw%)cﬂ /Efdédn(SOQS)Vg'VgGC
where %5 = (0¢, 0y). The relation
(o — ) 6{:%& Gt = %& . [((p— ?) %EGg —Gcﬁgw} -‘rGC%g'%g(p

where one has ﬁf.ﬁﬁ @ = pee + ¢nn = 0 in accordance with the Laplace
equation associated with a 2D flow in the thin water-layer above
the rigid lid 3 that closes the ship-hull surface X in the rigid-waterplane
flow model. The 2D divergence theorem finally yields

oF = f/rdé [qFGCJr(éf)*‘PF)u-VgGC} where ¢" = vVl (9.29)

and the unit vector v = (v*,1¥,0) is normal to the waterline I' and points
into the water, like the unit vector n normal to the ship-hull surface . The
notation ¢! in expression emphasizes the fact that the flow potential
p is evaluated at the ship waterline I' in this expression. The waterline
integral is simpler than the waterline integral in the Neumann-Kelvin
representation . In particular, the waterline integral in the Neumann-
Kelvin representation involves the derivative d¢ ¢ of the flow potential
i whereas the rigid-waterplane flow representation defined by c) and

(19.29)) only involves ¢.

The boundary-integral representation c), contains both the
integral over the ship-Hull surface £ and the integral over
the ship Waterline I'; and is then identified as the RW-hw boundary-
integral flow representation.

RW-h FLOW REPRESENTATION

The integrands of the hull-surface and waterline integrals and

in the RW-hw flow representation are identical except for the fact that the

Green function G in the hull-surface integral is replaced by G¢ in the

waterline integral (9.29). The similarity of the integrands of the hull-surface

and waterline integrals (9.23b)) and ((9.29) in the RW-hw flow representation
i

suggests that the waterline integral (9.29)) can be combined with the hull-
surface integral ((9.23b)), as is readily shown for a wall-sided ship-hull surface
»H (although the result holds more generally).
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Expressions (9.23c) and (9.29) yield

o'+ ¢l =[ da AT - / dt A" where (9.30a)
SH T

AP =¢"G+ (0—¢) H'VgG with ¢ = n-Vgap and (9.30b)

AT= "G4 (p— ") v Ve G with ¢ = v Veoh (9.30¢)

For a wall-sided ship-hull surface, the waterline-integral representation of
the potential ¢ in (9.30a) can be expressed as the hull-surface integral

o7 = ’/Eﬂd“ O (EAT) = */EHd“ (BA; + EcAY) (9.31a)
where E=E(() = e 9¢7/d2 (9.31b)

and d, is a fraction of the nondimensional draft D/L of the ship. The
function E(¢) vanishes rapidly as ( — —oo and one has E(0) = 1 and
E:(0) = 0. Expressions (9.30a)) and (9.31) then yield

o+ ol = EHda Afl where AF = A" — BA} — E A" (9.32)

and AH | AT and E are defined by expressions (9.30b}c) and (9.31b)), which
show that one has AZ = 0 at I'. Thus, the integrand A of the surface

integral (9.32)) vanishes at the ship waterline ', which implies numerical

cancellations between the hull-surface integral (9.23c) and the waterline
integral (9.29) or the equivalent waterplane integral (9.23d)).

The RW flow representation defined by (9.23at-b) and (9.32]) only contains
an integral over the ship-hull surface £, i.e. does not contain a line integral

around the ship waterline I', although the integrand A in (9.32) involves
the flow potential ' at I'. The flow representation defined by (9.23alb) and

(19.32) is then identified as the RW-h flow representation.

9.6 No-flow at the ship waterplane,
and NN flow representation

The RW flow representation (9.23|) associated with the basic rigid-
waterplane (RW) linear flow model allows a flow within the thin sheet of
water above the rigid lid X, A flow at the ship waterplane LI is also
allowed, but presumed 2D, in the RW-hw flow representation defined
by (9.23alc) and @ and in the RW-h flow representation defined by
and (]9—.22 with (9.31bf) and C). The special case in which

no flow is allowed at the ship waterplane " is now considered.

i
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The no-flow assumption in the rigid-waterplane flow model

Thus, the rigid-waterplane (RW) linear flow model with the fundamental
waterplane restriction
p(€)=0if Eexl (9.33)

in the limit 6 = 0 is now considered.

The assumption may arguably be justified by the fact that the
direction of the unit vector n normal to the body surface X7 U S is
discontinuous along the waterline I', and the flow velocity can therefore be
unbounded at I'; Indeed, an unbounded flow velocity at I' can arguably be
avoided if the ‘no-flow’ restriction is imposed within the thin sheet
of water between the rigid lid £# and the waterplane $f". Moreover, the
cancellations between the contributions of the ship-hull surface $# and the
waterplane 24" noted in section 9.5 arguably also suggest that the restriction
might be a reasonable assumption. Lastly, the assumption that the
thin sheet of water above the rigid lid 2 is a ‘dead-water’ region can be
argued to imply that the flows around the closed body surface X2 U ©H
and the free-surface piercing ship-hull surface X are practically identical,
as is presumed in the rigid-waterplane linear flow model. [9,3]

The restriction ¢ = 0 at the interior waterplane ©f" does not necessarily
imply that ¢ = 0 along the waterline I' or at the free surface X outside
I' because the flow potential ¢ (&,7n,¢ = 0) may be discontinuous across I'.
Such a case can easily be imagined. E.g. if 6§ denotes the angle between
the interior waterplane X" and the vector that joins a point x! € T to a
point x in the vicinity of x!, one has § = 0 and sin(#/2) = 0 if x € I
0 =7 and sin(0/2) = 1 if x € ¥, and § = 7/2 and sin(0/2) = 1/v/2 for a
point x € L if the hull surface X is vertical at x. Thus, the value of the
function sin(#/2) depends on the direction of approach to the point x'' € T.
Such a behavior, or more complicated and stronger singularities of the flow
potential ¢ at the waterline I' cannot be ruled out. [9,4]

Neumann-Noblesse (NN) flow representation

The restriction (9.33]) applied in expression ((9.23d) yields
¢ = ¢ CT where (9.34a)

ct :/ d¢dn G :/ dédn (f+1F0¢)*G . (9.34b)
»F »F

Expressions (8.35a)) and (8.36) yield the alternative expression

ct = —/dz v Ve G°¢ . (9.34c)
T
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Expression ((9.34c) and the second expression in (9.34b|) are continuous in
the entire lower half space z < 0.

The flow representation (9.23atc) with expression (9.34al) for the poten-
tial ¢! readily yield

(1-CT) ¢ =™ + oM (9.35a)

where the potentials qSEF and ¢ and the function CT(x) are defined by

expressions ([9.23btc) and (9.34btc) as

=" E/ZFd§dn[qFpr£‘fipr} G, (9.35b)
o =] da[d"G+(6-¢)nVeG] an (9350
or 7/ng vV G :/ZAngd77 (f+iF8¢)%G . (9.35d)

The boundary-integral flow representation holds in the entire lower
half space z < 0. This flow representation only involves the flow poten-
tial p = (&) at the ship-hull surface £, and hence provides an integral
equation that determines the unknown potential ¢ = ¢(x) at L# for a
ship that steadily advances through regular waves or in calm water, as well
as for a stationary body in regular waves. Indeed, the flow representation
is identical to the flow representation obtained in chapter 8
for diffraction-radiation of regular waves by an offshore structure. The flow
representation was obtained, over 40 years ago, in Noblesse (1983)
for the particular case of diffraction-radiation of regular water waves by a
stationary body and is then identified as the NN flow representation.

Flow-field point x outside the ship-hull surface
The NN flow representation ((9.35)) can be expressed as
¢:¢2F+/ da[qHG— cpn'VEG] +C¢o
>H
where C z/ d&dn G¢ +/ dan-VeG
=r A

is the flux through the closed surface S U due to a submerged source, or
a flux through the free-surface plane, at the singularity point x in the Green
function G'. One has C = 0 if x € (D U XF). Thus, the flow representation
(19.35)) expresses the flow potential ¢ = ¢(x) at a point x in the flow region
outside the ship-hull surface as

¢=¢2F+/2Hda[qHG—<pn-V£G} (9.36)
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where the flow potential ¢ = (&) at L is determined by the weakly
singular NN boundary-integral equation (9.35).

Hogner’s approximation for a ship that advances in calm water

In the particular case of a usual displacement ship that steadily advances in
calm water, the free-surface pressure p*” and flux ¢% in are nil, and
one then has ¢2F: 0. Moreover, the boundary condition for f=0
defines the hull-surface flux ¢ as ¢ = Fn®, and the flow representation

(9.36)) then becomes

6= da[anG—cpmVSG} . (9.37)
»H

Common displacement ships are streamlined slender bodies that create rel-

atively small flow disturbances; specifically, one has n* = O(B/L,) and

¢ = O(BD/L?) where Ly is the length and B and D are the beam or the

draft of the ship. Thus, the flow representation yields

¢ mF/ dan*G . (9.38)
S H

This approximation explicitly determines the flow created by a ship in terms
of the Froude number F' and n”, i.e. the speed and the length of the ship,
and the shape of the ship hull. The approximation is identical to
the approximation proposed by Hogner in 1932 as a composite of Michell’s
famous ‘thin-ship approximation’ and the similar ‘flat-ship approximation’
proposed by Havelock. In spite of its great simplicity, Hogner’s explicit
approximation is realistic and quite useful. [9,5]

9.7 Alternative linear flow models and
boundary-integral flow representations

Four alternative linear flow models, and five related alternative boundary-
integral flow representations, are considered in sections 9.2-9.6. These linear
flow models and flow representations are

(i) the classical NK (Neumann-Kelvin) linear flow model and NK flow
representation considered in sections 9.2 and 9.3,

(ii) the basic RW (Rigid-Waterplane) flow model and the corresponding
RW flow representation ((9.23]) considered in section 9.4,

(iii) the RW flow model with a 2D flow assumption at the ship water-
plane and the two related RW-hw flow representation (9.23alc),
and RW-h flow representations (9.23a}b), given in section 9.5,
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(iv) and the NN linear flow model and NN flow representation ((9.35)),
based on the RW flow model with a no-flow restriction at the ship water-
plane, analyzed in section 9.6.

The NK flow representation contains a line integral around the
ship waterline I' that involves the unknown flow potential ¢ and its deriva-
tive ¢ . Thus, this flow representation determines ¢ (x) at ($7UT") via an
integro-differential equation, whereas the four flow representations obtained
from three variants of the rigid-waterplane flow model do not involve O¢ ¢
and determine p(x) via integral equations.

The RW and RW-hw flow representations involve a surface integral over
the ship waterplane 1" or a line integral around the ship waterline I'. The
RW-h flow representation does not contain a line integral around I'. How-
ever, this flow representation involves the flow potential ¢ at T'.

The NN flow representation includes neither a waterline nor a waterplane
integral, and does not involve the flow potential ¢ at I'. Indeed, CT'in
is a function of x that is explicitly defined via the alternative expressions
(19.35d)). Thus, the NN flow representation yields an integral equation
that determines ¢ at the ship-hull surface 3.

The NK and NN flow representations

The NK flow representation (9.15)) can be expressed as
(1- C’*F) o= quF—&— "+ ¢! where (9.39a)

¢FEF/Fdn[F(Gaggo—goagG)—&-Qingo} (9.39b)

and the potentials (bZF and ¢! are defined by (9.23blc). Moreover, CL in
(9.39a)) is given by

szfQ/ dédn G+F [ dn(FGe —2ifG)
oF r
:/ d&dn [ f°G — FO¢ (FGe —2ifG)] :/ dédn Gy = OF
=F =F

where Stokes’ theorem, the free-surface boundary condition in , and
were used. The potential ¢* defined by and the waterline
integral in are identical. Thus, the NK flow representation
contains the waterline integral ¢, which does not appear in the NN flow
representation . The NK and NN flow representations (9.15) and
define different flow potentials ¢ = ¢(x) unless the integ
around the ship waterline is nil. This waterline integral is nil if ' = 0,
i.e. for a stationary body, in agreement with the analysis given in chapter
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8. However, if F' # 0, the waterline integral (9.39b)) might not be nil, and
the NK and NN flow representations might then determine different flow
potentials ¢ = p(x). [9,6]

The NN flow representation evidently is considerably simpler than
the NK representation . In particular, the NK flow representations
associated with an offshore structure in regular waves or a ship that advances
in calm water or through regular waves differ significantly, as is shown in
section 9.3, whereas the NN flow representation holds for a ship that
advances in calm water or through waves, as well as for an offshore structure
in waves as is shown in chapter 8. [9,7].

9.8 Neumann-Michell (NM) flow model for
a ship that advances in calm water

Four alternative linear flow models—the classical NK model, the basic RW
model, and the RW model with ‘2D-flow’ or ‘no-flow’ assumptions at the
ship waterplane—have already been considered. Other linear flow models
can be considered, as is now illustrated for a ship that steadily advances in
calm water.

The NK flow model and boundary-integral flow representation

In the special case f = 0 now considered, the NK boundary-integral flow
representation (9.16]) can be expressed as

qi):/Engdn[qF—Fpg}G+1/)H+/2Hda(¢—<p)n-V€G
+F2/d77 (¢ — @) Ge+ " where (9.40a)
r

¢Hz/2HdanH and wze/FdnGag@ . (9.40b)

The hull-surface flux ¢ and the linear free-surface elevation z%" for a ship
that advances in calm water are determined by (1.38) and (1.39a) as

¢ =Fn® and ZF:Fagga.

The potentials ¥ and ¢! defined by ([9.40b)) then become
vH =F | da Gn® and wFEF/dn G, (9.41)
$H r
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The NM flow model and boundary-integral flow representation

In the classical NK linear flow model, £ in is the mean wetted ship-
hull surface below the undisturbed free-surface plane ¢ = 0. However, X is
taken as the wetted hull surface below the actual free surface ¢ = 2% in the
alternative linear flow model—called Neumann-Michell (NM) model—that
is now considered. Indeed, the difference between these two wetted hull
surfaces yields a linear contribution to the hull-surface potential ¢ that
arguably should not be ignored in a consistent linear flow model. Thus, the
hull-surface potential ¥ defined by is now expressed as

P =l + 7 where i = F/ da G n*
=g
represents the contribution of the mean wetted ship-hull surface, denoted
as LI for clarity, and 1 accounts for the contribution of the narrow band

of water between the undisturbed free-surface plane ¢ = 0 and the linear
approximation to the actual free surface ¢ = 2" ~ I O¢ . The relation

n*da = —tYdld(,

where the unit vector t = (¢*,t¥, 0) is tangent to the waterline I' and oriented
like T, yields

ZF
v z—F/dﬂtyG/ ¢ = —F/duszF.
r 0 r
This expression and expression ([9.41)) for 1! show that one has 11 = —¢T.

Thus, the waterline integral )T in the NK flow representation and
the contribution 1 of the narrow band of water between the undisturbed
free-surface plane ¢ = 0 and the free surface ¢ = 2 in the hull-surface
potential 1/ cancel out, and the NK boundary-integral flow representation

then becomes
¢ :/EFdde[qF—Fp?]G—i—/EHda [qHG—i- (¢ —)n .vég}
+F2/Fd77 (¢ — ) Ge (9.42)
where £ is the mean wetted ship-hull surface. The boundary-integral flow

representation (9.42)) associated with the Neumann-Michell (NM) linear flow
model is called NM flow representation. [9,9]

9.9 Conclusions

In summary, four alternative linear models of potential flow around a ship
that steadily advances through regular waves, and five related boundary-
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integral flow representations, have been considered in this chapter. These
alternative flow models are the classical Neumann-Kelvin (NK) model, the
basic rigid-waterplane (RW) flow model and two related flow models, which
either allow a 2D flow or disallow any flow at the ship waterplane. In the
special case of a ship that advances in calm water, a fifth linear flow model
called Neumann-Michell (NM) model has also been considered. A notable
common feature of the six boundary-integral flow representations given in
this chapter is that they only involve weakly singular dipoles (¢ — ¢) V£ G

and define flow potentials that are continuous at the ship-hull surface 3.
[9,8] and [8,2].

The NN flow representation associated with the rigid-waterplane
model and the additional ‘no-flow restriction’ at the ship-waterplane
¥ stands out due to its remarkable simplicity. Indeed, the function CT(x)
in is explicitly defined by the alternative integrals over the
waterline I' or the waterplane 3" of the ship, and the flow representation
(19.35) only involves the unknown flow potential ¢ at the ship-hull surface
YH . Thus, the flow representation yields an integral equation that
determines the unknown flow potential at the hull surface . This flow
representation holds for the general case F'f # 0 as well as the particular
case F' = 0 considered in chapter 8 and the particular case f = 0 considered
in section 9.8. The waterline integral that defines C'(x) in can
be decomposed into Rankine and Fourier components, which can be evalu-
ated via the relations and the Fourier-Kochin method expounded in
chapters 10-12.

The flow representation relies on the restriction , which
imposes that the thin sheet of water above the rigid lid that closes a free-
surface piercing hull in the rigid-waterplane flow model is a ‘dead-water’
region. This ‘no-flow’ constraint arguably precludes flow singularities along
the waterline, and intuitively ensures that the flows around a free-surface
piercing ship-hull surface £ and the corresponding submerged body sur-
face £ U B defined in the rigid-waterplane flow model are practically
equivalent. Moreover, the waterplane condition is consistent with
the fact that the flow around X* does not determine a flow inside ¥ (out-
side the flow region), which can then be freely specified and in particular
can be chosen nil.

The no-flow restriction ¢ = 0 imposed at the ship waterplane in the NN
flow model is unrelated to the goal of preventing the occurrence of irregu-
lar frequencies, and indeed is not sufficient to achieve that goal. Irregular
frequencies can be prevented in the manner noted in section 8.6 for the NN
flow representation. This method, which leads to an overdetermined system
of linear equations, can also be applied to the alternative boundary-integral
flow representations considered in chapter 9.
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Differences between the alternative flow representations considered in
chapter 9 ultimately stem from the fact that they are associated with linear
flow models that differ in some respects. In particular, the ship waterline
I' in the NK flow model is the intersection curve of two surfaces: the free
surface ©F and the mean wetted ship-hull surface ¥, where the linear
free-surface boundary condition or the ship-hull boundary condition
are applied. However, in the RW-hw, RW-h and NN flow models, the
waterline I' separates three surfaces: the free surface X7, the ship-hull sur-
face £, and the ship waterplane %" where different boundary conditions
hold: the free-surface condition , the ship-hull condition , and
either the 2D flow condition or the no-flow condition . Although
the flow potentials ¢ determined by the five alternative flow representations
defined in sections 9.2-9.6 all satisfy the Laplace equation and identical
boundary conditions at the free surface and at the ship-hull surface, dif-
ferences or incompatibilities between these boundary conditions may result
in different local behaviors of the flow potential, and possibly different flow
singularities, at the ship waterline T". [9,4] and [9,6].

As is noted in section 1.2, the analysis expounded in the book is associ-
ated with the Kelvin-Michell linear free-surface boundary condition, which
is based on the simplest, and arguably the most realistic, assumption that
the velocity V@ of the flow created by a ship is significantly smaller than the
ship speed V;. However, the nonlinear kinematic and dynamic free-surface
boundary conditions given in section 1.2 can also be linearized based on
alternative linearization assumptions. In particular, the velocity V® of the
flow created by a ship can be assumed to be a small perturbation of the
flow around the ship in the infinite or zero-gravity limits. Alternative theo-
ries of flows around ships, notably approximate theories that do not involve
the formulation of a boundary-integral flow representation, have also been
considered in a broad literature. [9,10] and [9,11]

Although nonlinear effects are ignored in the linear analysis considered in
the book, nonlinearities have important local effects. In particular, the bow
wave of a ship that steadily advances in calm water is greatly influenced by
nonlinearities [9,12]. Moreover, the linear theory of potential flow around
a ship that advances in calm water predicts short waves that in reality are
too steep to exist due to nonlinearities [9,13]. Despite these limitations,
linear potential flow theory is mostly realistic and widely useful, and can
also be corrected to account for nonlinearities [9,14].
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PART 2b :

Fourier-Kochin method
and flow representations
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Chapter 10

Basic Rankine-Fourier
decomposition and
Fourier-Kochin method

The boundary-integral flow representations given in the previous chapter
express the flow potential ¢ via distributions of the Green function G and
its gradient VgG over the free surface X', the hull surface X, and the

waterplane 31" and/or the waterline T" of the ship. The Green function G is
defined in chapter 7 in terms of Rankine singularities and a Fourier super-
position of elementary wave functions. This fundamental Rankine-Fourier
decomposition of G and Vg G is now applied to similarly decompose the
flow potential ¢ determined by the boundary-integral flow representation
in terms of Rankine and Fourier components. The flow representa-
tion is considered for a ship that steadily advances through regular
waves in deep water and for diffraction-radiation of regular waves by an
offshore structure in water of uniform finite depth. The two special cases of
a ship that steadily advances in calm water and wave diffraction-radiation
of regular waves by an offshore structure in deep water only involve simple
modifications of the two more general cases considered in this chapter, and
accordingly are not explicitly considered.
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10.1 Rankine-Fourier decomposition of flow
around a ship advancing through waves

Green functions GG associated with potential flows around an offshore struc-
ture in regular waves or a ship that advances through waves or in calm
water can be expressed as

471G = —1/r—|—HR—|— GF' =GR+ G where (10.1a)
r=v/h2+ ((—2)? with h=\/(£ —2)2+ (n—y)? (10.1Db)

and the Rankine and Fourier components H® and G¥ denote harmonic
functions that are defined in terms of elementary (free-space) Rankine
sources or a Fourier superposition of elementary plane waves.

For a ship that steadily advances through regular waves, now considered,
the Rankine and Fourier components G and G are defined by (7.6) as

GR=—1/r4+1/r" where 1" =y/h2+ ({(+ 2)? and (10.1¢)

1 E(z+ O +ila(z—£)+8(y—n)]
- 7/ / (10.1d)
w)_ —|—Foz )2/k —1+iesign(f+Fa)

with («a,8) = k;(cos%smv) and € =40 . (10.1e)

Expressions (10.1bfc) show that one has

GR =0 at ©F. (10.2)

As is explained in Chapter 7, expressions (10.1d)) and (10.1d]) correspond
to a Rankine-Fourier decomposition that is optimal for a ship that advances
in regular waves. However, the Rankine-Fourier decomposition (10.1c}d) is
not optimal in the special cases FF = 0 or f = 0, as is also explained
in chapter 7. The Rankine-Fourier decomposition d) is used in the
present chapter. The modified optimal Rankine-Fourier decomposition that
is also optimal in the limits F' — 0 or f — 0 is considered in chapter 12.

The Rankine-Fourier decomposition ((10.1)) of the Green function is now
applied to the flow representation (9.35)). Thus, the flow representation

[1- C’F] 6=+ quF where (10.3a)

Cl=—[dtv-VeG©, 10.3b
[t v v (10.30)

ot E/EHda [qHG—i—(ng—ap)n-VlsG} and (10.3¢)

¢2F5/ dedn [qF — Fpf —ifp"]G (10.3d)
wF
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is considered. The unit vectors n = (n*,n¥,n?) and v = (v*,v¥,0) normal
to the hull surface £ or the waterline I' point outside the ship.

The free-surface potential (/)EF, the hull-surface potential ¢ and the
function CT in the flow representation ((10.3)) are expressed as

PF+ OF E/ dédn [¢" —Fpf —1fp" | (GR+GF) | (10.4a)
»F

b1 + o E/ da [qH(GR+ G+ (0 —)n-Ve(GH+GT) |, (10.4b)
SH

CE+Of = f/ dl v-Vg (GHC +GT) . (10.4c)
r

The Rankine components ¢%, ¢%, Cf and the Fourier components ¢£,
o, CE defined by (10.4) and (10.1]) are successively considered below.

Rankine components

Expressions (10.4)), (10.1bfc), (10.2) and (7.56|) yield

Pr=0, (10.5a)

47t Z/ZHda {qH <r1 + :/) + (¢ — o) (nrgr — ?T/)rg ﬂ where

r=(¢-z,n-y,(—2) and ¥' = ({ —2,n—y,(+2), (10.5b)
Ry L v —z)+v¥(n—y)

Cr(x) = 27T/rd€( RN (10.5¢)

Fourier components

The Fourier components ¢k, ¢f, CL defined by (10.4) and 110.1d}e) are
defined via distributions of the Fourier component G*" in (10.1a)) and its
gradient VS GF. Specifically, expressions (10.4) yield

oL E/EFdfdn[qF—Fpg— ifp"]G", (10.6a)
. E/ da [qHGF—i— (¢ —¢)n-Vg GF} (10.6b)
S H
d ci=—|dtv-veGF¢ 10.6
an - /1“ v-Vg ( c)
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where GF, Vé G and G¥¢ are given by

GF 1

GF —i

wa Lo Y kGO tila@—0 8] Lo
G’; _E/_ﬂ/o —1h (f+Fa)?/k —1+iesign(f+Fa) (107)
¢

GF¢ 1/k

in accordance with (10.1d)).

10.2 The usual Green-function method

The usual Green-function method involves two main steps. The first
step consists in a ‘Fourier integration’ to evaluate the Fourier components
GF(¢,x) and Vﬁ GF(¢,x) defined by the singular double Fourier integrals

(10.7). The subsequent second step is a ‘space integration’ to integrate G
and VE GT over the free surface X', the hull surface ¥, and the waterline
I in accordance with expressions ((10.6)).

The first ‘Fourier-integration’ step is now considered. In the simplest
case of diffraction-radiation of regular waves by an offshore structure in
deep water, one has F = 0 and the functions G¥ and Vg G are functions
of the two nondimensional variables

2% = f*(z+ () and h* = f?h where h=/(z — )%+ (y —n)? .

The functions G and Ve G associated with wave diffraction-radiation by
an offshore structure in water of uniform depth D are functions of the three
nondimensional variables 2%, h% and d* = f2d = w?D/g. For a ship that
steadily advances in calm water, one has f = 0 and the functions G¥ and
V£ GF are functions of the three nondimensional coordinates

V' =@-&/F*, yW=(@y-n)/F*and 2V = (z+()/F* .

The functions G¥" and VE GF associated with a ship that advances through

regular waves are functions of 7 = Ff = V; w/g and the three coordinates
x — &,y — 1,z + ¢ made nondimensional with respect to the lengths g/w?,
V2/g or Vi /w in accordance with (1.35)).

These Green functions, defined by the singular double Fourier integrals
as was already noted, have been widely studied, especially for the
simplest cases F' = 0 and f = 0 in deep water. In particular, alternative
Fourier integral representations, near-field and far-field series expansions,
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one-dimensional Taylor series and even global analytical approximations
have been given for the functions G and Vg G¥ associated with the sim-
plest cases F' = 0 or f = 0. Numerical methods, notably methods based on
analytical series expansions or polynomial approximations in complemen-
tary contiguous regions and methods based on table interpolation associated
with coordinate and function transformations, for evaluating G and Vg GF
have also been developed. These various analytical studies and numerical
methods are reported in a huge literature [10,1].

The second ‘space-integration’ step in the usual Green function method
consists in integrating the Fourier components G and VE GF of the Green

function G and its gradient VgG over the panels (flat or curved triangles

or quadrilaterals) and segments that approximate the ship-hull surface L
and its waterline I' in common numerical implementations based on a panel
method. If a distribution of pressure and/or flux is applied at the free
surface XF in the vicinity of T, G and Vg GF must also be integrated

over free-surface panels. Accurate numerical integration of G and Ve GF
requires particular attention because G¥ and Vg G involve complicated
singularities at the origin { —x =0, n—y=0,(+ 2 =0.

The usual Green-function method is not considered in this book because
both the ‘Fourier-integration’ step and the ‘space-integration’ step involve
considerable complexities, especially for the general case Ff # 0 and in
finite water-depth. Moreover, this classical approach requires complicated
analysis for every particular class of flows and hence lacks generality.

An inherently more general and simpler alternative, called Fourier-
Kochin (FK) method, to the usual Green-function method is considered.
The order in which the ‘Fourier-integration’ and the ‘space-integration’ steps
are performed in the usual Green-function method is reversed in the FK
method. A main recommendation of the FK method is that it is readily
applicable to a general dispersion function associated with plane waves for
a wide class of dispersive media, as is shown in the next chapter.

10.3 Fourier-Kochin representation
of Fourier components

Expressions (10.7) for G and Vg GF can readily be used to express the
Fourier components ¢k, ¢¥; and CL defined by (10.6]) as

il A
N oppll) e
o (e A Sl Wl RV e e T e M
T T
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where Ar, Ag and Ar are defined as
Ap ;/ dédn g —Fpf —ifp"] €, (10.9a)
EF

Apg E/ZHda (" + {kn* —i(an®+ Bn¥)} (6 — ¢)] "€, (10.9b)

@ y

Ap = i/ PRy, (10.9¢)
r k

with € = e 188 and k= /a2 + 52 . (10.9d)

Expressions (10.8)) and (10.9) for the Fourier components ¢L, ¢f and CF
are called Fourier-Kochin representation hereafter. The amplitude functions

Ar, Ay and Ar in the Fourier-Kochin representation are called Kochin
functions or amplitude functions. These Kochin functions are functions of
the Fourier variables o and § and are denoted as A(«, 8) hereafter.

10.4 Fourier-Kochin representation for
diffraction-radiation of regular waves
in water of uniform finite depth

The Fourier-Kochin (FK) representation — given in the previous
section for a ship that steadily advances through regular waves in deep
water is now considered for diffraction and radiation of regular waves by
a stationary body in water of uniform finite depth. The optimal Rankine-
Fourier decomposition of the Green function for offshore structures
in finite water-depth is defined by as

1 o AC Az eila(z=8)+B(y—n)] L 10.10
’%/ / 1— (k/f?) tanh(kd) + 2ie/f ¢ (10.10a)
AS =2 cosh[k(¢C+d)]/e*? and (10.10b)
. k | coshlk(z+ d)] L e k &
A {1+f2} 3 cosh (kd) + 5 ¢ 1 72 tanh(kd)|e
(10.10c)
Expression (10.10a]) readily yields
GF 1
Gf T —i CAzeila(z=8+B8(y—n)]
o= fanfar I e .
Gy, ) =" Jo —if 1—(k/f?)tanh(kd) +ie
Gf kEtanh[k(¢ + d)]
(10.11)
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where the inconsequential positive term 2/f in 2ie/f is omitted.

Expressions ((10.6)) and (10.11) show that the Fourier-Kochin represen-
tation (10.8)-(10.9) associated with a ship that steadily advances through
waves is modified as

oL Ap .

oF / /dk cosh(kd) | Az ellaztBy) (10.12)
" - ekd 2 BT (k/f2) tanh(kd) + ie '
oF / A (k/f?) (kd)

where the Kochin functions Ap, Ay and Ar are defined as

Ap z/ dédn [¢" —Fpf —ifp" ] €, (10.13a)
ZF
hik(C+d
Ap E/EHda [qH+{Tknz— ilan®+8nY)} (¢ — ga)] W £,
(10.13b)
Ar=i tanh(kd)/ g Y (10.13¢)
I“ k

with £=e (@88 P = tanh[k(C+d)] , k=+a2+52. (10.13d)

10.5 The Fourier-Kochin method

The three Kochin functions defined by ((10.9) in deep water or ((10.13) in
finite water-depth are determined via a space integration of the elementary
wave functions

E=e HatHBn) - okCe or cosh[k(C+d)]E (10.14)

over the free surface ¥ and the ship-hull surface ¥ and waterline I'. This
space (surface and line) integration of smooth ordinary functions evidently
is incomparably simpler than the space integration of the Green function
GF and its gradient Ve G¥, which contain intricate singularities, that is
required in the usual Green function method. The Kochin functions defined
by or do not involve the wave frequency f or the Froude
number F, which only appear in the Fourier integrals or .
Thus, the Fourier-Kochin (FK) method avoids the daunting analytical and
numerical complexities associated with the evaluation and subsequent space
integration of G and VS GF. However, these compelling advantages of the
FK method require the evaluation of the double Fourier integrals
or for amplitude functions that correspond to general distributions
of singularities, rather than for a point source in the usual Green-function
method.

195



Thus, the ‘space-integration’ required to determine the Kochin function
is a trivial task in the Fourier-Kochin method, but the ‘Fourier-integration’
involves the evaluation of the singular double Fourier integrals or
for a general Kochin function associated with a general distribution
of the elementary wave functions . Specifically, the fundamental task
in the Fourier-Kochin method consists in evaluating the Fourier integral

» B l/ﬂ' /oo A(a7ﬁ;z)ei(ax+6y) -
o (x) = - _7crl’y ; dkA(a,ﬁ)+ieA1(a,B) where e =40, (10.15)

A(a, f;z) denotes a general amplitude (or Kochin) function, and

Ao, B) = (f+Fa)*/k -1 and A;(a,B) =sign(f+ Fa) (10.16a)
or A(a,B)=1—(k/f*)tanh(kd) and Ai(a,B) =1 (10.16b)

are the dispersion functions associated with a ship that advances through
regular waves in deep water or diffraction-radiation of regular waves by an
offshore structure [10,2].

The Fourier-Kochin representations given in this chapter for a ship that
steadily advances through regular waves in deep water and for diffraction-
radiation of regular waves by an offshore structure in finite water-depth can
readily be formulated for various similar problems—mnotably for a ship that
steadily advances in calm water and wave diffraction-radiation by an off-
shore structure in deep water—involving diffraction-radiation of plane dis-
persive waves. Accordingly, the Fourier integral is considered in the
next chapter for general dispersion functions A («, 3) and A;(a, ), rather
than the specific dispersion functions , and a general amplitude func-
tion A (a, B;z). An analytical representation of the singular double Fourier
integral that provides an ezact decomposition of ¢f" into waves and
a non-oscillatory local disturbance is given in chapter 11.
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Chapter 11

Waves and local-effects
decomposition in a general
dispersive medium

As is explained in the previous chapter, the basic core issue of the Fourier-
Kochin method consists in evaluating the singular double Fourier integrals

P N ® A, B;z) el(@z+8y)
¢ (X"%/_,‘f”/o R @) richi@mp (11-12)

1 [ 00 Ao B'Z)ei(a‘”+6y)
F s M
=—1/d d h =+0. (11.1b
o= [ 8] da i Ay e =0 (11.0)
The double Fourier integrals (11.1)) are considered in this chapter for gen-
eral functions A and A; and a general (although preferably not rapidly
oscillatory) amplitude function A.

The functions A and A in correspond to dispersion functions
associated with dispersive waves that propagate in a plane, like the waves
created by ships or offshore structures of primary interest in this book.
Other examples of waves that propagate in a plane are the waves created
by an airplane landing over a very large floating elastic offshore structure,
and the waves created by a truck or a submarine traveling over or below
an ice sheet. Indeed, offshore structures in regular waves, ships advancing
in calm water or through regular waves, and bodies moving over or below
an elastic structure create disturbances (flow, deflection) that can be ex-
pressed in terms of Fourier representations of the form 7 and these
disturbances consist of both waves and non-oscillatory local disturbances.
Thus, the singular double Fourier integrals are an essential element of
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the mathematical and numerical analysis of forcing effects in a wide range of
dispersive media [11,1]. The amplitude function A in the Fourier integrals
(11.1)) is associated with a general forcing.

Direct numerical evaluation of the singular double Fourier integrals
(11.1) for € = 40 is difficult and impractical. Direct numerical evaluation
of (11.1) for 0 < € < 1 is feasible, but impractical. Indeed, a practical and
accurate method for evaluating the singular double Fourier integrals
requires an analytical approach, as is considered in this chapter [11,2].

The Fourier integral (11.1b)) is now considered and is expressed as

of(x) = %/025 e'PY I¥(B,z) where (11.2a)
F Y Ala,B)e'”
i, = [ da A(a,B) +icAr(af) (11:20)

The singular Fourier integral is analyzed for ¢ = 40, a general am-
plitude function A and general real functions A and A;. These two functions
are dispersion functions in the book, although the analysis expounded in
the next section is general.

11.1 A basic singular Fourier integral

The Fourier variable 3 in expression (11.2b)) is inconsequential and the basic
singular Fourier integral

Fle) = Ooa A(a)eiaw with € =
I (x)i/foil Ala) +ieA () th +0 (11.3)

is then analyzed in this section [11,3]. As was already noted, A («) and
Aj(a) are general real functions, and the amplitude function A(«a) likewise
is general (but does not oscillate very fast). In the limit € = +0 considered

in , the integrand of the integral I¥ is singular at the roots of the
function A (). These roots are denoted as a = «, hereafter.

The limit ¢ = +0

The limit € = +0 of the integral (11.3) is first considered. One has

1 _ 1 deA/A 1 ieA AT /A (11.4)
A+ieA; A A+ieA; A A4 2A? 0 AT A '

If A 50, the last two terms on the right side of expression (11.4)) vanish in
the limit € = 0. Thus, the only contribution of these two terms stems from
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the roots o = a, of the equation A () = 0. The function Ae®?® in (11.3)
can then be taken as A*e!®*?  and the functions A; and A can be taken
as A} and A* (o — o), in the last two terms on the right side of ((11.4]).

Hereafter, A*, A} and A? denote the values of the functions A(a),
A1 (a) or Ay(a) at the root @ = v, . This notation in which a superscript
(+)* or a subscript (-). denotes a function (-) evaluated at the root @ = v, of
the function A («) = 0 is used hereafter in this chapter and in chapter 12.

The decomposition ([11.4) applied in the integral (11.3)) yields

. 4
IF:I{—;(HF—I—I;)A*@“"*I where I} E/_o;iagem‘z , (11.5a)

=/ 4a €o1/12a d 11.5b

F= to it camy ™ (11:50)
[ele] 2 *\2 *

F _ e (AD)?/AL 1

I _/ da (A2 (a—a)’+ €A a—a, (11.5¢)

The integrand of the integral (11.5¢]) is an odd function of o — o, and one
then has I" = 0. However, the integral If is not nil. The change of variable

a—a, =¢e|A/A% |t in (11.5b]) yields

sign(A sign (A7)
= A% /dtt2+1 7T|A| .

Expression (11.5a]) then becomes

=1F —17TZSlgn A*| fosw
—IF Z : A K A o
=1y —im ) sign(ATAY) A © (11.6a)

Qs

where IE :/ da g elor (11.6Db)

The integrand of the integral Il" defined by is singular at the
roots of A = 0. These singularities yield a dominant far-field contribution
according to Fourier analysis [11,4]. Therefore it is crucial to explicitly
determine this far-field contribution and to formally combine it with the
contribution of the term ie A in . Indeed, it is shown further on
that the dominant contributions of the term ie A; in and of the roots
o = @, in expression can cancel out in some regions of the physical
space, e.g. ahead of a ship that advances in calm water.
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Basic decomposition into singular and regular components

The singular integral (11.6bf) is now considered. One has

A L Ael(a )@ 3 .
I(XI * _iogx h 11.7
=A + E @) .A e where (11.7)
A A A 2 2
L _ — o Hi(a—ay)/4
SR A e a) ™ ‘ (11.8a)

is a localizing function of effective width determined by the real positive
number g, . The function A” can be expressed in the form

A—Ar A [A’;(a—a*)—A+ 1-A

AL =

A + Ax Ao — ay) o — o
wor o =2, (o —as)?/4
+ Z A © A** (OZ** - a*)

Qw7 Qe

where the summation »:, _, is performed over all the roots of A =0
other than the root a@ = av... Moreover, A** and A%* denote the values of
the functions A(«) and A, («) at the root o = .. This expression for the
function A% shows that A” is finite at the root o = o, and given by

A* A* A* A**e‘“** (Qun — i)?/4
L=2oa_ 11.8b
AL A T 2(A o Z A (o o) (11.8b)
Expressions (11.6b]) and 1) yield
IF =15 + I where I _/ da Aleior (11.9a)
[L*t /4+1tz
and ISEZA* / [ — (11.9b)

The change of variable tx = 0 yields

0o —yit2/4+itm oo 23
/ dt%:%sign(w)/ do %e_#fe"‘/(z\z\)?
_ 0

— isign(a) [ dt @ lelviie) o
0

= imsign(x) erf ['mq
[

where erf(+) is the error function. It then follows from (11.9b) that one has

Ig:Ziﬂ'Sign(x)erf[ q 2* o

Qs

—Z 17Terf[ ] Zl oz (11.10)

[e3%
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Expressions (11.6)), (11.9a]) and (11.10]) yield

*
i x

=k +Z im[erf(x/p.) — sign(ATAY)] ﬁ* e

where IF is the integral (T1.3)) and I£ is defined by (11.9a]) and (11.8).

11.2 Fundamental analytical representation

Thus, the singular Fourier integral (11.3)) can finally be expressed as

> A(a) elor
= = 1" g 1.11
I"(x) /_OilaA(a)JrieAl(a) I'"(z) 4+ I'*(x) where (11.11a)
"(z) EZ i [erf(z/py) — sign(ATAL)] ﬁ* plowe g (11.11b)

A *e*/‘i(a*a*)z/4
L L 1o¢a: L_
1*(z) /_OcoiaA with A" = T — Y Cory (11.11c)
c “ALa s o =12, (s — @0)?/4

and Ay = 23 ;4 “+ > 4 Ae** (@ — ) (11.11d)

Qun 7 Qx

The summation Z in expressions ([11.11bftc) is performed over all the

roots o = av, of the equation A(a) =0 and the summation >, . in
(11.11d)) is performed over all the roots of A = 0 other than the root o = .

As was already noted, A}, A%, A%, A* and A7 in ([L.11b}d) denote the
values of the functions A (a), Aa(a), Aga(a), A(a) or Ay(a) at the root
a = a,, and A* and AY* similarly denote the values of the functions A («)
and A, () at the root & = .. Moreover, p, and g denote the values of
the parameter p that correspond to the roots a, or au.. The function AL
is finite (indeed smooth) at the root a. and the Fourier integral I L defined
by therefore is not singular, unlike the basic Fourier integral I*
defined by . Specifically, the (finite) value AL of the function A”

at the root o = a, is given by (11.11dJ).

The identity (11.11]) expresses the singular integral I* as the sum of a
wave function 1" and a regular (non-singular) integral I*. This identity
does not involve approximations, i.e. is exact, and holds for e = +0 (rather
than for 0 < € < 1) and for general functions A, A and A;.

The error function in expression (|1 and the exponential function
in expressions ([11.11ctd) involve the p051tlve real numbers fi, Or iy . Thus,
the components I W and I* in the decomposition (I1.11a)) involve p, and
L5 , although the integral I* defined by (I1.11a)) does not involve ji, O fiyy .
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Different choices for p, and .. therefore yield alternative decompositions
I" = I 4+ I and the identity defines a family of decompositions
I" = "4 I Indeed i can be chosen arbitrarily from a strictly mathemat-
ical standpoint. However, the next section shows that the identity
is best suited for accurate numerical evaluation and practical applications
if p is well chosen.

11.3 Main features of a general waves
and local-effects decomposition

Essential features of the decomposition I = I 4 I given by (11.11)) are
explained in this section. The case when the equation A () = 0 has a single
root « is considered for simplicity, and pu. is then simply denoted as p.

The two fundamental limits ;=0 and p = o

The two interesting special choices 1 = 0 and p = oo are studied first.

In the limit u — oo, expressions (|11.11)) yield

IF=1% 1 1L where (11.12a)

IV = —imsign(A}) A*el® /| A% (11.12b)

and TL = PV/ da 2 gios (11.12¢)
L A

PV in (11.12¢|) represents the Cauchy principal value of the integral.
In the limit 4 — 0, expressions (|11.11}) become

I =1V + IF where (11.13a)

IV =im[sign(z) — sign(A} A%)] A* e @7 /A, (11.13Db)
L _ o a iaz

and I 7/7;}0[ {A pp—— ] e . (11.13c)

A simple illustrative example

Important features of the general identity (11.11)) and the two related special

cases (|11.12811.13]) are now illustrated for a simple special case. Specifically,
the case

2

A=e " , Ay=1and A=a—a, with a, =1
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—o0 +ix/2 c oo +ix/2
case 0 <z
o ST o0
—00 1—1i0 . 00
case x < 0
—oco+ix/2 c oo +ix/2

Figure 11.1: Integration contour in the complex plane a = a,- + iy used
to evaluate the integral I defined by (l1.14a]) for 0 < z (top) or z < 0
(bottom).

is considered. The derivative of the function A («) is A, = 1. Expressions

(11.11}) then become

o0 e—a2+ia:c
IF:/ do ————— = W4 I* where (11.14a)
oo a—141i0
IV=inr[erf(x/p) —1]e'*/e and (11.14b)
00 —a?_ —p?(a—-1)%/4-1 .
It z/ da & ¢ elaz (11.14c)
o a—1
Expressions (11.12) and (11.13) similarly become
ei:c [ee] efa2+iaw
IV =—irn , IL = PV/ da ——————— and (11.15a)
e oo a—1

. 2
iz o] —a’_q .

IV =in[sign(z) —1] S , IE :/ da % e’ . (11.15Db)
e _ a—

o0
The integral I defined by can be evaluated via the classical
contour integration technique in the complex plane o = «, + iay;. Specif-
ically, the contour of integration depicted in Fig. [[1.1]is considered. This
integration contour does not enclose a pole if x > 0, but encloses the pole
a=1-i0if z < 0. One has —a®+iax = —(a2 + 2%/4) along the path
a = a, +iz/2 with —oo < @, < co. The connections between this path of
integration and the real axis —oo < a,- < o0, a; = 0 yield a nil contribution.
One then obtains the representation

I =1V 4 IL where IV = in [sign(z) —1] e'%/e (11.16a)
L (et

d I = doy ———— . 11.16b

ane L /ooaa—1+ix/2 (11.16b)
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real part imaginary part
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Figure 11.2: Functions I'V(x) and I'X(z) defined by expressions with
=1 (second row) and expressions (11.15a)) or (11.15bf), which correspond
to p = oo (third row) or pr = 0 (top row). The bottom row depicts the
corresponding function I(z) = I'V(z) + I*(x), which is independent of y.

The change of variable o, — « was performed in the integral (11.16b)). The
wave components IV in (11.16a)) and I(YV in (|11.15bf) are identical, and one

also has I* = I}' as can be verified.

Thus, the decomposition I}V + I, which corresponds to the special case
u = 0 in the decomposition IV 4 I* given by , is equivalent to the
classical technique of contour integration in the complex « plane, and the
decomposition IV + IZ associated with the special case u = co amounts to
taking the principal value of the singular integral I as is noted in (11.12)).
[11,5]
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Influence of the parameter p

The functions I"V(z), I*(x) and I*(z) = I"(x) + I"(z) defined by expres-
sions ([11.15a) or (11.15b)), which correspond to p = oo or p = 0 as was
just noted, and expressions with u = 1 are depicted in Fig. .
This figure illustrates the already-noted fact that different choices of u in
(11.14)) yield different components I and I'” but has no effect on the sum
I" = " 4 I*, which is depicted in the bottom row of Fig. @ This figure
therefore provides a numerical verification of the identity (]@

The bottom row of Fig. also shows that the function I” decays
rapidly as x — 400 and is negligible in the region 0 < z except in a small
near-field region in the vicinity of z = 0. Moreover, Fig. shows that one
has I” ~ —IW for 0 < z in the special case ju = 0o, in accordance with the
identity I” = IV + I'™. Thus, expressions associated with the limit
it — oo and the principal-value integral I correspond to a decomposition
I 4+ I' that involves numerical cancellations or additions of oscillatory
functions in half the physical space, specifically in 0 < x or in & < 0 in the
example considered in and in F The decomposition
associated with the choice p = oo in (11.14bfc) therefore is poorly suited
for numerical evaluation.

Expression yields I" =~ 0 and hence I* ~ I* if 2 < 2/, as is
illustrated in Fig. [I1.2. Numerical cancellations between the components
IW and I* in the identity I¥ = IV 4 I'” therefore only occur within a region
of width || & 2. This region is small if g is chosen small, but is large if p
is large.

The ‘near-field region’ |z| < 24, where unwanted numerical cancellations
between the components I and I'” in the identity I = I+ I'* can occur,
vanishes as g — 0. Indeed, the component I}V in expressions (11.15b)),
which correspond to the limit g — 0, is nil for 0 < . Expression (11.15b)
for the component I}V shows that I}V is not smooth at z = 0, as can also
be observed in Fig. . This figure shows that the integral I} likewise is
not smooth at x = 0, although the sum "= I}V + IF is smooth. The choice
@ = 0, while much preferable to the choice u = oo, yields a decomposition
that is not smooth and therefore not fully satisfactory. Indeed, a positive
value of p in is required to obtain a decomposition I¥ = I + I
that is smooth, in accordance with the error function erf(x/u) and as is
illustrated in Fig. for p=1.

Thus, the parameter p should not be chosen too small, to avoid exces-
sively sharp variations of the components I" and I, or too large to avoid
numerical cancellations between the components IV and I in large regions
of the physical space. The simple illustrative example considered in this
section suggests that the special case ;= 0 is essentially equivalent to the
classical technique of contour integration in the complex plane. This tech-

205



real part imaginary part

1 1
0 === 0 =
> //'/
= -1 ———— =02 -1 2
C=05 o=
-2 ———— C =075 -2 =
-3 -3
-2 1 0 1 2 -2 1 0 1 2
0 2
1 ~ y
= Ny A
-2
3 -2
2 1 0 1 2 -2 1 0 1 2
0 2
~
~
+
-2 0
Il
2,
~
-4 -2
-2 -1 0 1 2 -2 -1 0 1 2
xr xr

Figure 11.3: Functions I'"(x), I*(x) and I*(x) = I(z) + I* () defined by
expressions (11.14atb) and (11.20) with c, =1 for C = 0.25, 0.5 and 0.75.

nique yields a discontinuity in the wave component IV because a pole is
either inside or outside an integration contour, whereas a smooth transi-
tion is allowed in the fundamental decomposition (11.11f). Indeed, the error

function in expression (|11.14b]) is replaced by the sign function in (11.15b)).

11.4 Optimal decomposition into
waves and local effects

The localizing function e~ Hi(a—a)?/4 iy expression (|11.11c)) is negligible
outside the ‘dispersion strip’ defined as
=5/t < — s <5/ . (11.17)

This dispersion strip is wide if p, is small, narrow if p, is large. Indeed,
the integral I” defined by (11.11d) is singular in the limit 4 — oo, which
corresponds to the principal value of a singular integral in accordance with

[[T.12d).

The approximation
erf(z/p.) ~ sign(z/p.) = sign(z) if 2 < |z|/p.
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shows that the function

O = erf(z/p.) — sign(ATAL) (11.18a)
in expression (T1.11b)) for the function I is given by
O =~ sign(z) —sign(ATAL) if 2 < |x|/ps . (11.18Db)

This approximation shows that the influence of the parameter p, on the
component I, and hence also on the component I, in the decomposition
IF = I + I' is insignificant in the far-field region 2p, < |z|. The extent
of the ‘near-field region’ |z| < 2p. of influence of u, on the components
IW and I' in the decomposition I = I + I'" vanishes as pu, — 0, but is
unbounded if p, — 0.

Thus, small/large values of u. yield wide/narrow dispersion strips (in
the Fourier plane) and small/large regions (in the physical plane) where
the components I" and I are significantly influenced by .. Moreover,
unwanted numerical cancellations between the components I and I'” occur
within a wide region |z| < 2pu. if p, is large, as